Mathematical modeling and numerical method for estimating the characteristics of non-isothermal creep based on the experimental data

Cover Page

Cite item

Full Text

Abstract

The desire to reduce the mass of machines and structures while improving their quality, as well as to make the most complete use of the mechanical properties of materials, requires permanent improvement and development of known methods for calculating and analyzing the stress-strain state of materials under creep conditions.

The article proposes a numerical method for estimating the characteristics of the third stage of non-isothermal creep based on a set of creep diagrams constructed when processing test results for various values of nominal stress and temperature.

The method is based on the nonlinear regression model, the root-mean-square estimates of the parameters of which are found by linearization, including on the basis of difference equations describing the experimental results. The proposed numerical method can also be used to estimate the parameters of the third creep stage, when the experimental results are presented in the form of a set of test diagrams for only one temperature.

The results of testing the developed numerical method for processing the experimental results in the form of creep diagrams for the 09G2C alloy at different temperatures are presented. The reliability and efficiency of the calculation algorithms and methods of nonlinear estimation presented in the work are confirmed by the results of numerical and analytical studies and mathematical models of the third stage of non-isothermal creep constructed on the basis of experimental data.

About the authors

Vladimir E. Zoteev

Samara State Technical University

Author for correspondence.
Email: zoteev-ve@mail.ru
ORCID iD: 0000-0001-7114-4894
SPIN-code: 8547-1223
Scopus Author ID: 16456013300
ResearcherId: D-8245-2014
http://www.mathnet.ru/person38585

Dr. Tech. Sci.; Professor; Dept. of Applied Mathematics and Computer Science

244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

References

  1. Rabotnov Yu. N. Izbrannye trudy. Problemy mekhaniki deformiruemogo tela [Selected Papers. Problems of the Mechanics of a Deformable Rigid Body]. Moscow, Nauka, 1991, 196 pp. (In Russian)
  2. Rabotnov Yu. N. Creep problems in structural members. Amsterdam, London, North-Holland Publ. Co., 1969, xiv+822 pp.
  3. Malinin N. N. Prikladnaia teoriia plastichnosti i polzuchesti [Applied Theory of Plasticity and Creep]. Moscow, Mashinostroenie, 1975, 400 pp. (In Russian)
  4. Malinin N. N. Raschety na polzuchest' elementov mashinostroitel’nykh konstruktsii [Creep Calculations of Mechanical Engineering Structure Elements]. Moscow, Mashinostroenie, 1981, 220 pp. (In Russian)
  5. Lokoshchenko A. M. Polzuchest' i dlitel’naia prochnost’ metallov [Creep and Long-Term Strength of Metals]. Moscow, Fizmatlit, 2016, 504 pp. (In Russian)
  6. Boytsov Yu. I., Danilov V. L., Lokoshchenko A. M., Shesterikov S. A. Issledovanie polzuchesti metallov pri rastiazhenii [Study of Tensile Creep of Metals]. Moscow, Bauman Moscow State Technical Univ., 1997, 98 pp. (In Russian)
  7. Sosnin O. V., Gorev B. V., Nikitenko A. F. Energeticheskii variant teorii polzuchesti [Energy Variant of Creep Theory]. Novosibirsk, Inst. of Hydrodynamics, USSR Acad. of Sci., 1986, 95 pp. (In Russian)
  8. Sosnin O. V., Lyubashevskaya I. V., Novoselya I. V. Comparative estimation of high-temperature creep and rupture of structural materials, J. Appl. Mech. Tech. Phys., 2008, vol. 49, no. 2, pp. 261–266. https://doi.org/10.1007/s10808-008-0036-0
  9. Samarin Yu. P., Klebanov Ya. M. Obobshchennye modeli v teorii polzuchesti konstruktsii [Generalized Models in the Theory of Creep of Structures]. Samara, Samara State Techn. Univ., 1994, 196 pp. (In Russian)
  10. Samarin Yu. P. Derivation of exponential approximations for creep curves by the method of successive isolation of exponential terms, Strength Mater., 1974, vol. 6, no. 9, pp. 1062–1066. https://doi.org/10.1007/BF01528264
  11. Radchenko V. P. The mathematical model of inelastic deformation and failure of the metals by energy-type creep, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1996, no. 4, pp. 43–63 (In Russian). https://doi.org/10.14498/vsgtu237
  12. Radchenko V. P., Eremin Yu. A. Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsii [Rheological Deformation and Fracture of Materials and Structural Elements]. Moscow, Mashinostroenie-1, 2004, 264 pp. (In Russian)
  13. Radchenko V. P., Simonov A. V. Development of an automated system for building models of inelastic deformation of metals on the basis of nonparametric alignment method of experimental data, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1999, no. 7, pp. 51–62 (In Russian). https://doi.org/10.14498/vsgtu208
  14. Katanakha N. A., Semenov A. S., Getsov L. B. Unified model of steady-state and transient creep and identification of its parameters, Strength Mater., 2013, vol. 45, no. 4, pp. 495–505. https://doi.org/10.1007/s11223-013-9485-7
  15. Belleneger E., Bussy P. Phenomenological modeling and numerical simulation of different modes of creep damage evolution, Int. J. Solids Struct., 2001, vol. 38, no. 4, pp. 577–604. https://doi.org/10.1016/S0020-7683(00)00042-1
  16. Besseling J. F. Plasticity and creep theory in engineering mechanics, In: Topics in Applied Continuum Mechanics. Vienna, Springer, 1974, pp. 115–135. https://doi.org/10.1007/978-3-7091-4188-5_6
  17. Benedetti M., Fontanari V., Scandi P., Ricardo C.L.A., Bandini M. Reverse bending fatigue of shot peened 7075-T651 aluminium alloy: The role of residual stress relaxation, Int. J. Fatigue, 2009, vol. 31, no. 8–9, pp. 1225–1236. https://doi.org/10.1016/j.ijfatigue.2008.11.017
  18. Draper N. R., Smith H. Applied Regression Analysis, Wiley Series in Probability and Statistics. New York, John Wiley and Sons, 1998, xix+716 pp. https://doi.org/10.1002/9781118625590
  19. Demidenko E. Z. Lineinaia i nelineinaia regressii [Linear and Nonlinear Regressions]. Moscow, Finance and Statistics, 1981, 302 pp. (In Russian)
  20. Zoteev V. E., Makarov R. Yu. A numerical method for the determination of parameters of the strain softening creep model, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2016, vol. 20, no. 2, pp. 328–341 (In Russian). https://doi.org/10.14498/vsgtu1488
  21. Zoteev V. E., Makarov R. Yu. Numerical method of estimation of parameters of deformation of creep in the exponential dependency of parametr of weakening from the strain, Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie, 2016, no. 3 (51), pp. 18–25 (In Russian).
  22. Granovskii V. A., Siraya T. N. Metody obrabotki eksperimental'nykh dannykh pri izmereniiakh [Methods of Processing Experimental Data in Measurements]. Leningrad, Energoatomizdat, 1990, 288 pp. (In Russian)
  23. Seber G. A. F., Lee A. J. Linear Regression Analysis, Wiley Series in Probability and Statistics. Hoboken, NJ, Wiley, 2003, xvi+565 pp. https://doi.org/10.1002/9780471722199
  24. Vuchkov I., Boyadzhieva L., Solakov O. Prikladnoi lineinyi regressionnyi analiz [Applied Linear Regression Analysis]. Moscow, Finance and Statistics, 1987, 238 pp. (In Russian)
  25. Zoteev V. E. Parametricheskaia identifikatsiia dissipativnykh mekhanicheskikh sistem na osnove raznostnykh uravnenii [Parametric Identification of Dissipative Mechanical Systems Based on Difference Equations]. Moscow, Mashinostroenie, 2009, 344 pp. (In Russian)
  26. Zoteev V. E. A numerical method of nonlinear estimation based on difference equations, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2018, vol. 22, no. 4, pp. 669–701 (In Russian). https://doi.org/10.14498/vsgtu1643
  27. Boyko S. V. Modeling the shaping of structural elements in nonstationary creep conditions, Thesis of Dissertation (Cand. Phys. & Math. Sci.). Novosibirsk, Lavrentiev Inst. of Hydrodynamics, 2020, 133 pp. (In Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».