A problem with nonlocal conditions for a one-dimensional parabolic equation
- Authors: Beylin A.B.1, Bogatov A.V.2, Pulkina L.S.2
-
Affiliations:
- Samara State Technical University
- Samara National Research University
- Issue: Vol 26, No 2 (2022)
- Pages: 380-395
- Section: Short Communications
- URL: https://journal-vniispk.ru/1991-8615/article/view/97248
- DOI: https://doi.org/10.14498/vsgtu1904
- ID: 97248
Cite item
Full Text
Abstract
Full Text
##article.viewOnOriginalSite##About the authors
Alexander B. Beylin
Samara State Technical University
Email: abeilin@mail.ru
ORCID iD: 0000-0002-4042-2860
SPIN-code: 8390-6910
http://www.mathnet.ru/person100342
Cand. of Techn. Sci., Associate Professor, Dept. Mechanical Engineering, Machine Tools and Tools
Russian Federation, 244, Molodogvardeyskaya st., Samara, 443100Andrey V. Bogatov
Samara National Research University
Email: andrebogato@mail.ru
ORCID iD: 0000-0001-5797-1930
http://www.mathnet.ru/person152395
Postgraduate Student
Russian Federation, 34, Moskovskoye shosse, Samara, 443086Ludmila S. Pulkina
Samara National Research University
Author for correspondence.
Email: louise@samdiff.ru
ORCID iD: 0000-0001-7947-6121
SPIN-code: 9768-0196
Scopus Author ID: 6506395220
ResearcherId: C-1180-2017
http://www.mathnet.ru/person17853
Dr. Phys. & Math. Sci., Professor, Dept. of Differential Equations and Control Theory
Russian Federation, 34, Moskovskoye shosse, Samara, 443086References
- Bažant, Zdeněk P., Jirásek M. Nonlocal integral formulation of plasticity and damage: Survey of progress, J. Eng. Mech., 2002, vol. 128, no. 11, pp. 1119–1149. DOI: https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119).
- Cannon J. R. The solution of the heat equation subject to the specification of energy, Quart. Appl. Math., 1963, vol. 21, no. 2, pp. 155–160. DOI: https://doi.org/10.1090/qam/160437.
- Kamynin L. I. On certain boundary problem of heat conduction with nonclassical boundary conditions, Comput. Math. Math. Phys., 1964, vol. 4, no. 6, pp. 33–59. EDN: XNNPFM. DOI: https://doi.org/10.1016/0041-5553(64)90080-1.
- Ionkin N. I. The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition, Differ. Uravn., 1977, vol. 13, no. 2, pp. 294–304 (In Russian).
- Kartynnik A. V. A three-point mixed problem with an integral condition with respect to the space variable for second-order parabolic equations, Differ. Equ., 1990, vol. 26, no. 9, pp. 1160–1166.
- Bouziani A. On the solvability of parabolic and hyperbolic problems with a boundary integral condition, Int. J. Math. Math. Sci., 2002, vol. 31, no. 4, pp. 201–213. DOI: https://doi.org/10.1155/S0161171202005860.
- Kerefov A. A., Shkhanukov–Lafishev M. Kh., Kuliev R. S. Boundary-value problems for a loaded heat equation with nonlocal Steklov-type conditions, In: Neklassicheskie uravneniia matematicheskoi fiziki [Nonclassical Equations of Mathematical Physics]. Novosibirsk, Inst. Math. SB RAS, 2005, pp. 152–159 (In Russian).
- Kozhanov A. I. On a nonlocal boundary value problem with variable coefficients for the heat equation and the Aller equation, Differ. Equ., 2004, vol. 40, no. 6, pp. 815–826. EDN: PJGDYR. DOI: https://doi.org/10.1023/B:DIEQ.0000046860.84156.f0.
- Ivanchov N. I. Boundary value problems for a parabolic equation with integral conditions, Differ. Equ., 2004, vol. 40, no. 4, pp. 591–609. EDN: XLSRJL. DOI: https://doi.org/10.1023/B:DIEQ.0000035796.56467.44.
- Orazov I., Sadybekov M. A. One nonlocal problem of determination of the temperature and density of heat sources, Russian Math. (Iz. VUZ), 2012, vol. 56, no. 2, pp. 60–64. EDN: XMXTBB. DOI: https://doi.org/10.3103/S1066369X12020089.
- Cannon J. R., van der Hoek J. The classical solution of the one-dimensional two-phase Stefan problem with energy specification, Ann. Mat. Pura Appl., IV. Ser., 1982, vol. 130, no. 1, pp. 385–398. DOI: https://doi.org/10.1007/BF01761503.
- Cannon J. R., Lin Y. Determination of a parameter p(t) in some quasi-linear parabolic differential equations, Inverse Problems, 1988, vol. 4, no. 1, pp. 35–45. DOI: https://doi.org/10.1088/0266-5611/4/1/006.
- Kamynin V. L. The inverse problem of determining the lower-order coefficient in parabolic equations with integral observation, Math. Notes, 2013, vol. 94, no. 2, pp. 205–213. EDN: RFQRGX. DOI: https://doi.org/10.1134/S0001434613070201.
- Steklov V. A. The problem of cooling of inhomogeneous solid, Commun. Kharkov Math. Soc., 1896, vol. 5, no. 3–4, pp. 136–181 (In Russian).
- Pul’kina L. S. Boundary-value problems for a hyperbolic equation with nonlocal conditions of the I and II kind, Russian Math. (Iz. VUZ), 2012, vol. 56, no. 4, pp. 62–69. EDN: PDSZMV. DOI: https://doi.org/10.3103/S1066369X12040081.
- Pulkina L. S. Nonlocal problems for hyperbolic equation from the view point of strongly regular boundary conditions, Electron. J. Differ. Equ., 2020, vol. 2020, no. 28, pp. 1–20. https://ejde.math.txstate.edu/Volumes/2020/28/abstr.html.
- Kozhanov A. I., Dyuzheva A. V. Non-local problems with integral displacement for high-order parabolic equations, Bulletin of Irkutsk State University, Ser. Mathematics, 2021, vol. 36, pp. 14–28 (In Russian). DOI: https://doi.org/10.26516/1997-7670.2021.36.14.
- Danyliuk I. M., Danyliuk A. O. Neumann problem with the integro-differential operator in the boundary condition, Math. Notes, 2016, vol. 100, no. 5, pp. 687–694. EDN: XNSUDH. DOI: https://doi.org/10.1134/S0001434616110055.
- Kozhanov A. I. On the solvability of some nonlocal and associated with them inverse problems for parabolic equations, Math. Notes of Yakutsk State Univ., 2011, vol. 18, no. 2, pp. 64–78 (In Russian).
- Kozhanov A. I., Dyuzheva A. V. The second initial-boundary value problem with integral displacement for second-order hyperbolic and parabolic equations, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2021, vol. 25, no. 3, pp. 423–434 (In Russian). DOI: https://doi.org/10.14498/vsgtu1859.
- Evans L. C. Uravneniia s chastnymi proizvodnymi [Partial Differential Equations]. Novosibirsk, Tamara Rozhkovskaya, 2003, 560 pp. (In Russian)
- Ladyzhenskaya O. A. Kraevye zadachi matematicheskoi fiziki [Boundary Problems of Mathematical Physics]. Moscow, Nauka, 1973, 407 pp. (In Russian)
Supplementary files
