Lagrange’s representation of the quantum evolution of matter fields
- Authors: Samarin A.Y.1, Shterenberg A.M.1
-
Affiliations:
- Samara State Technical University
- Issue: Vol 27, No 1 (2023)
- Pages: 50-63
- Section: Differential Equations and Mathematical Physics
- URL: https://journal-vniispk.ru/1991-8615/article/view/145889
- DOI: https://doi.org/10.14498/vsgtu1953
- ID: 145889
Cite item
Full Text
Abstract
It is shown that a quantum path integral can be represented as a functional of the unique path that satisfies the principle of least action. The concept of path will be used, which implies the parametric dependence of the coordinates of a point on time x(t), y(t), z(t). On this basis, the material fields, which are identified with a quantum particle, are represented as a continuous set of individual particles, the mechanical motion of which determines the spatial fields of the corresponding physical quantities. The wave function of a stationary state is the complex density of matter field individual particles. The modulus of complex density sets the density of matter normalized in one way or another at a given point in space, and the phase factor determines the result of the superposition of material fields in it. This made it possible to transform the integral equation of quantum evolution to the Lagrange’s representation. By using the description of a quantum harmonic oscillator as an example, this approach is verified. EPRtype experiment is described in detail, and the possibility of the faster-then light communication is proved, as well as the possible rules of thumb of this communication are proposed.
About the authors
Alexey Yu. Samarin
Samara State Technical University
Author for correspondence.
Email: Samarinay@yahoo.ru
ORCID iD: 0000-0001-7640-3875
http://www.mathnet.ru/rus/person42489
Cand. Phys. & Math. Sci.; Associate Professor; Dept. of General Physics and Physics of Oil and Gas Production
Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244Alexander M. Shterenberg
Samara State Technical University
Email: asher53@yandex.ru
ORCID iD: 0000-0002-1825-0097
Dr. Phys. & Math. Sci.; Professor; Dept. of General Physics and Physics of Oil and Gas Production
Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244References
- Schrödinger E. Der stetige Übergang von der Mikro- zur Makromechanik // Naturwissenschaften, 1926. vol. 14. pp. 664–666. DOI: https://doi.org/10.1007/BF01507634.
- Bell J. Against ’measurement’ // Physics World, 1990. vol. 3, no. 8. pp. 33–40. DOI: https://doi.org/10.1088/2058-7058/3/8/26.
- Einstein A., Podolsky B., Rosen N. Can quantum-mechanical description of physical reality be considered complete? // Phys. Rev., 1935. vol. 47, no. 10. pp. 777–780 10.1103/PhysRev.47.777.
- Samarin A. Yu. Nonlinear dynamics of open quantum systems // Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2018. vol. 22, no. 2. pp. 214–224. EDN: XWXSKT. DOI: https://doi.org/10.14498/vsgtu1582.
- Clauser J. F., Horne M. A., Shimony A., Holt R. A. Proposed experiment to test local hidden-variable theories // Phys. Rev. Lett., 1969. vol. 23, no. 15. pp. 880–883. DOI: https://doi.org/10.1103/PhysRevLett.23.880.
- Freedman S. J., Clauser J. F. Experimental test of local hidden-variable theories // Phys. Rev. Lett., 1972. vol. 28, no. 14. pp. 938–941. DOI: https://doi.org/10.1103/PhysRevLett.28.938.
- Aspect A., Grangier P., Roger G. Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: A new violation of Bell’s inequalities // Phys. Rev. Lett., 1982. vol. 49, no. 2. pp. 91–94 10.1103/PhysRevLett.49.91.
- Feynman R. P. Space-time approach to non-relativistic quantum mechanics // Rev. Mod. Phys., 1948 10.1103/RevModPhys.20.367. vol. 20, no. 2. pp. 367–387.
- Feynman R. P., Hibbs A. R. Quantum Mechanics and Path Integrals. Mineola, NY: Dover Publ., 2010. xii+371 pp.
- Zinn-Justin J. Path Integrals in Quantum Mechanics. Oxford: Oxford Univ. Press, 2005. xiii+318 pp.
- Samarin A. Yu. Quantum evolution in terms of mechanical motion // Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2021. vol. 25, no. 2. pp. 393–401. EDN: LIZMMB. DOI: https://doi.org/10.14498/vsgtu1851.
- Samarin A. Yu. Quantum evolution as a usual mechanical motion of peculiar continua // Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020. vol. 24, no. 1. pp. 7–21. EDN: LIZMMB. DOI: https://doi.org/10.14498/vsgtu1724.
- MacColl L. A. Note on the transmission and reflection of wave packets by potential barriers // Phys. Rev., 1932. vol. 40, no. 4. pp. 621–626. DOI: https://doi.org/10.1103/PhysRev.40.621.
- Hartman T. E. Tunneling of a wave packet // J. Appl. Phys., 1962. vol. 33, no. 12. pp. 3427–3433. DOI: https://doi.org/10.1063/1.1702424.
- Steinberg A. M. How much time does a tunneling particle spend in the barrier region? // Phys. Rev. Lett., 1995. vol. 74, no. 13. pp. 2405–2409. DOI: https://doi.org/10.1103/PhysRevLett.74.2405.
- Kac M. Probability and Related Topics in Physical Sciences. New York: Interscience Publ., 1959. xiii+266 pp.
Supplementary files
