The Dirichlet problem for a three-dimensional equation of mixed type with three singular coefficients
- Authors: Urinov A.K1, Karimov K.T1
-
Affiliations:
- Fergana State University
- Issue: Vol 21, No 4 (2017)
- Pages: 665-683
- Section: Articles
- URL: https://journal-vniispk.ru/1991-8615/article/view/20567
- DOI: https://doi.org/10.14498/vsgtu1559
- ID: 20567
Cite item
Full Text
Abstract
Full Text
##article.viewOnOriginalSite##About the authors
Akhmadjon K Urinov
Fergana State University
Email: urinovak@mail.ru
http://orcid.org/0000-0002-9586-1799 Dr. Phys. & Math. Sci.; Professor; Dept. of Mathematical Analysis and Differential Equations 19, Murabbiylar st., Fergana, 712000, Uzbekistan
Kamoliddin T Karimov
Fergana State University
Email: karimovk80@mail.ru
http://orcid.org/0000-0002-9098-4116 Cand. Phys. & Math. Sci.; Doctoral Candidate; Dept. of Mathematical Analysis and Differential Equations 19, Murabbiylar st., Fergana, 712000, Uzbekistan
References
- Франкль Ф. И. О задачах С. А. Чаплыгина для смешанных до- и сверхзвуковых течений // Изв. АН СССР. Сер. матем., 1945. Т. 9, № 2. С. 121-143.
- Бицадзе А. В. Некорректность задачи Дирихле для уравнений смешанного типа // ДАН СССР, 1953. Т. 122, № 2. С. 167-170.
- Хачев М. М. Первая краевая задача для линейных уравнений смешанного типа. Нальчик: Эльбрус, 1998. 168 с.
- Солдатов А. П. К теории уравнений смешанного типа / Соврем. мат. и ее прил., Т. 10, Труды международной конференции по динамическим системам и дифференциальным уравнениям (Суздаль, 1-6 июля 2002 г.) Часть 4. Тбилиси: Институт кибернетики Академии наук Грузии, 2003. С. 153-162.
- Сабитов К. Б. Задача Дирихле для уравнений смешанного типа в прямоугольной области // Докл. РАН, 2007. Т. 413, № 1. С. 23-26.
- Сабитов К. Б., Сулейманова А. Х. Задача Дирихле для уравнения смешанного типа второго рода в прямоугольной области // Изв. вузов. Матем., 2007. № 4. С. 45-53.
- Сабитов К. Б., Вагапова Э. В. Задача Дирихле для уравнения смешанного типа с двумя линиями вырождения в прямоугольной области // Дифференц. уравнения, 2013. Т. 49, № 1. С. 68-78.
- Хайруллин Р. С. К задаче Дирихле для уравнения смешанного типа второго рода с сильным вырождением // Дифференц. уравнения, 2013. Т. 49, № 4. С. 528-534. doi: 10.1134/S0374064113040122.
- Сафина Р. М. Задача Дирихле для уравнения Пулькина в прямоугольной области // Вестн. СамГУ. Естественнонаучн. сер., 2014. № 10(121). С. 91-101.
- Zhang K, Li Y. On Dirichlet problem of Tricomi-type equation in rectangular domains // J. Nanjing Norm. Univ., Nat. Sci. Ed., 2016. vol. 39, no. 1. pp. 29-35. doi: 10.3969/j.issn.1001-4616.2016.01.005.
- Нахушев А. М. Критерий единственности задачи Дирихле для уравнения смешанного типа в цилиндрической области // Дифференц. уравнения, 1970. Т. 6, № 1. С. 190-191.
- Сафина Р. М. Задача Дирихле с осевой симметрией для уравнения смешанного Bэллиптико-B-гиперболического типа с характеристическим вырождением // Вестник Татарского государственного гуманитарно-педагогического университета, 2010. № 4. С. 63-69.
- Алдашев С. А. Критерий однозначной разрешимости спектральной задачи Дирихле в цилиндрической области для многомерного уравнения Лаврентьева-Бицадзе // Изв. вузов. Матем., 2011. № 4. С. 3-7.
- Сафина Р. М. Критерий единственности решения задачи Дирихле с осевой симметрией для трехмерного уравнения смешанного типа с оператором Бесселя // Изв. вузов. Матем., 2014. № 6. С. 78-83.
- Watson G. N. A Treatise on the Theory of Bessel Functions. Cambridge: Cambridge University Press, 1922.
- Кузнецов Д. С. Специальные функции. М.: Высшая школа, 1962. 448 с.
- Olver F. W. J. Introduction to Asymptotic Analysis / Introduction to Asymptotics and Special Functions. New York: Academic Press, Inc., 1974. pp. 1-30. doi: 10.1016/b978-0-12-525856-2.50005-x.
- Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. Т. 2. М.: Наука, 1969. 800 с.
Supplementary files
