The Dirichlet problem for a three-dimensional equation of mixed type with three singular coefficients


Cite item

Full Text

Abstract

We study the Dirichlet problem in a parallelepiped for a three-dimensional equation of mixed type with three singular coefficients. Separation of variables with Fourier series and spectral analysis are used to investigate this problem. Two one-dimensional spectral problems are obtained for the possed problem using the Fourier method. On the basis of the completeness property of the eigenfunction systems of these problems, the uniqueness theorem is proved. The solution of the problem is constructed as the sum of a double Fourier-Bessel series. In justification of the uniform convergence of the series constructed, asymptotic estimates of the Bessel functions of the real and imaginary argument are used. On their basis, estimates are obtained for each member of the series. The estimates obtained made it possible to prove the convergence of the series and its derivatives up to the second order inclusive, and also the existence theorem in the class of regular solutions.

About the authors

Akhmadjon K Urinov

Fergana State University

Email: urinovak@mail.ru
http://orcid.org/0000-0002-9586-1799 Dr. Phys. & Math. Sci.; Professor; Dept. of Mathematical Analysis and Differential Equations 19, Murabbiylar st., Fergana, 712000, Uzbekistan

Kamoliddin T Karimov

Fergana State University

Email: karimovk80@mail.ru
http://orcid.org/0000-0002-9098-4116 Cand. Phys. & Math. Sci.; Doctoral Candidate; Dept. of Mathematical Analysis and Differential Equations 19, Murabbiylar st., Fergana, 712000, Uzbekistan

References

  1. Франкль Ф. И. О задачах С. А. Чаплыгина для смешанных до- и сверхзвуковых течений // Изв. АН СССР. Сер. матем., 1945. Т. 9, № 2. С. 121-143.
  2. Бицадзе А. В. Некорректность задачи Дирихле для уравнений смешанного типа // ДАН СССР, 1953. Т. 122, № 2. С. 167-170.
  3. Хачев М. М. Первая краевая задача для линейных уравнений смешанного типа. Нальчик: Эльбрус, 1998. 168 с.
  4. Солдатов А. П. К теории уравнений смешанного типа / Соврем. мат. и ее прил., Т. 10, Труды международной конференции по динамическим системам и дифференциальным уравнениям (Суздаль, 1-6 июля 2002 г.) Часть 4. Тбилиси: Институт кибернетики Академии наук Грузии, 2003. С. 153-162.
  5. Сабитов К. Б. Задача Дирихле для уравнений смешанного типа в прямоугольной области // Докл. РАН, 2007. Т. 413, № 1. С. 23-26.
  6. Сабитов К. Б., Сулейманова А. Х. Задача Дирихле для уравнения смешанного типа второго рода в прямоугольной области // Изв. вузов. Матем., 2007. № 4. С. 45-53.
  7. Сабитов К. Б., Вагапова Э. В. Задача Дирихле для уравнения смешанного типа с двумя линиями вырождения в прямоугольной области // Дифференц. уравнения, 2013. Т. 49, № 1. С. 68-78.
  8. Хайруллин Р. С. К задаче Дирихле для уравнения смешанного типа второго рода с сильным вырождением // Дифференц. уравнения, 2013. Т. 49, № 4. С. 528-534. doi: 10.1134/S0374064113040122.
  9. Сафина Р. М. Задача Дирихле для уравнения Пулькина в прямоугольной области // Вестн. СамГУ. Естественнонаучн. сер., 2014. № 10(121). С. 91-101.
  10. Zhang K, Li Y. On Dirichlet problem of Tricomi-type equation in rectangular domains // J. Nanjing Norm. Univ., Nat. Sci. Ed., 2016. vol. 39, no. 1. pp. 29-35. doi: 10.3969/j.issn.1001-4616.2016.01.005.
  11. Нахушев А. М. Критерий единственности задачи Дирихле для уравнения смешанного типа в цилиндрической области // Дифференц. уравнения, 1970. Т. 6, № 1. С. 190-191.
  12. Сафина Р. М. Задача Дирихле с осевой симметрией для уравнения смешанного Bэллиптико-B-гиперболического типа с характеристическим вырождением // Вестник Татарского государственного гуманитарно-педагогического университета, 2010. № 4. С. 63-69.
  13. Алдашев С. А. Критерий однозначной разрешимости спектральной задачи Дирихле в цилиндрической области для многомерного уравнения Лаврентьева-Бицадзе // Изв. вузов. Матем., 2011. № 4. С. 3-7.
  14. Сафина Р. М. Критерий единственности решения задачи Дирихле с осевой симметрией для трехмерного уравнения смешанного типа с оператором Бесселя // Изв. вузов. Матем., 2014. № 6. С. 78-83.
  15. Watson G. N. A Treatise on the Theory of Bessel Functions. Cambridge: Cambridge University Press, 1922.
  16. Кузнецов Д. С. Специальные функции. М.: Высшая школа, 1962. 448 с.
  17. Olver F. W. J. Introduction to Asymptotic Analysis / Introduction to Asymptotics and Special Functions. New York: Academic Press, Inc., 1974. pp. 1-30. doi: 10.1016/b978-0-12-525856-2.50005-x.
  18. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. Т. 2. М.: Наука, 1969. 800 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».