A large-scale layered stationary convection of a incompressible viscous fluid under the action of shear stresses at the upper boundary. Temperature and presure field investigation


Cite item

Full Text

Abstract

In this paper a new exact solution of an overdetermined system of Oberbeck-Boussinesq equations that describes a stationary shear flow of a viscous incompressible fluid in an infinite layer is under study. The given exact solution is a generalization of the Ostroumov-Birich class for a layered unidirectional flow. In the proposed solution, the horizontal velocities depend only on the transverse coordinate z. The temperature field and the pressure field are three-dimensional. In contradistinction to the Ostroumov-Birich solution, in the solution presented in the paper the horizontal temperature gradients are linear functions of the z coordinate. This structure of the exact solution allows us to find a nontrivial solution of the Oberbeck-Boussinesq equations by means of the identity zero of the incompressibility equation. This exact solution is suitable for investigating large-scale flows of a viscous incompressible fluid by quasi-two-dimensional equations. Convective fluid motion is caused by the setting of tangential stresses on the free boundary of the layer. Inhomogeneous thermal sources are given on both boundaries. The pressure in the fluid at the upper boundary coincides with the atmospheric pressure. The paper focuses on the study of temperature and pressure fields, which are described by polynomials of three variables. The features of the distribution of the temperature and pressure profiles, which are polynomials of the seventh and eighth degree, respectively, are discussed in detail. To analyze the properties of temperature and pressure, algebraic methods are used to study the number of roots on a segment. It is shown that the background temperature and the background pressure are nonmonotonic functions. The temperature field is stratified into zones that form the thermocline and the thermal boundary layer near the boundaries of the fluid layer. Investigation of the properties of the pressure field showed that it is stratified into one, two or three zones relative to the reference value (atmospheric pressure).

About the authors

Natalya V Burmasheva

Ural Federal University named after the First President of Russia B. N. Yeltsin; Institute of Engineering Science, Urals Branch, Russian Academy of Sciences

Email: nat_burm@mail.ru
http://orcid.org/0000-0003-4711-1894 Cand. Techn. Sci.; Associate Professor; Institute of Mathematics and Computer Science, Dept. of Applied Mathematics and Mechanics; Researcher; Sector of Nonlinear Vortex Hydrodynamics 19, Mira st., Ekaterinburg, 620002, Russian Federation; 34, Komsomolskaya st., Ekaterinburg, 620049, Russian Federation

Evgeny Yu Prosviryakov

Institute of Engineering Science, Urals Branch, Russian Academy of Sciences

Email: evgen_pros@mail.ru
http://orcid.org/0000-0002-2349-7801 Dr. Phys. & Math. Sci.; Head of Sector; Sector of Nonlinear Vortex Hydrodynamics 34, Komsomolskaya st., Ekaterinburg, 620049, Russian Federation

References

  1. Joseph D. D. Stability of fluid motions. Berlin, Heidelberg, New York: Springer-Verlag, 1976. 282 pp.
  2. Гершуни Г. З., Жуховицкий Е. М., Непомнящий А. А. Устойчивость конвективных течений. М.: Наука, 1989. 320 с.
  3. Пухначёв В. В. Иерархия моделей в теории конвекции / Краевые задачи математической физики и смежные вопросы теории функций. 32 / Зап. научн. сем. ПОМИ, Т. 288. СПб.: ПОМИ, 2002. С. 152-177.
  4. Остроумов Г. А. Свободная конвекция в условиях внутренней задачи. М.: Гостехиздат, 1952. 256 с.
  5. Бирих Р. В. О термокапиллярной конвекции в горизонтальном слое жидкости // ПМТФ, 1966. Т. 7, № 3. С. 69-72.
  6. Smith M. K., Davis S. H. Instabilities of dynamic thermocapillary liquid layers. Pt. 1. Convective instabilities // J. Fluid Mech., 1983. vol. 132. pp. 119-144. doi: 10.1017/S0022112083001512.
  7. Ortiz-Pérez A. S., Dávalos-Orozco L. A. Convection in a horizontal fluid layer under an inclined temperature gradient // Phys. Fluids, 2011. vol. 23, no. 8. pp. 084107-084111.doi: 10.1063/1.3626009.
  8. Андреев В. К. Решения Бириха уравнений конвекции и некоторые его обобщения. Красноярск: ИВМ СО РАН, 2010. 68 с.
  9. Андреев В. К., Бекежанова В. Б. Устойчивость неизотермических жидкостей (обзор) // ПМТФ, 2013. Т. 54, № 2. С. 3-20.
  10. Андреев В. К., Степанова И. В. Однонаправленные течения бинарных смесей в модели Обербека-Буссинеска // Изв. РАН. МЖГ, 2016. Т. 51, № 2. С. 13-24.
  11. Бекежанова В. Б., Гончарова О. Н., Резанова Е. В., Шефер И. А. Устойчивость двухслойных течений жидкости с испарением на границе раздела // Изв. РАН. МЖГ, 2017. № 2 С. 23-35. doi: 10.7868/S0568528117020062.
  12. Бирих Р. В., Денисова М. О., Костарев К. Г. Возникновение конвекции Марангони, вызванной локальным внесением поверхностно активного вещества // Изв. РАН. МЖГ, 2011. № 6. С. 56-68.
  13. Бирих Р. В., Денисова М. О., Костарев К. Г. Развитие концентрационно-капиллярной конвекции на межфазной поверхности // Изв. РАН. МЖГ, 2015. № 3. С. 56-67.
  14. Бирих Р. В., Пухначёв В. В. Осевое конвективное течение во вращающейся трубе с продольным градиентом температуры // Докл. РАН, 2011. Т. 436, № 3. С. 323-327.
  15. Бирих Р. В., Пухначёв В. В. Конвективное течение в горизонтальном канале с неньютоновской реологией поверхности при нестационарном продольном градиенте температуры // Изв. РАН. МЖГ, 2015. № 1. С. 192-198.
  16. Гончарова О. Н., Кабов О. А. Гравитационно-термокапиллярная конвекция в горизонтальном слое при спутном потоке газа // Докл. РАН, 2009. Т. 426, № 2. С. 183-188.
  17. Гончарова О. Н., Резанова Е. В. Пример точного решения стационарной задачи о двухслойных течениях с испарением на границе раздела // ПМТФ, 2014. № 2. С. 68-79.
  18. Пухначёв В.В. Нестационарные аналоги решения Бириха // Известия АлтГУ, 2011. № 1-2. С. 62-69.
  19. Аристов С. Н. Вихревые течения в тонких слоях жидкости: Автореф. дис.. докт. физ.-мат. наук: 01.02.05. Владивосток: ИАПУ, 1990. 32 с.
  20. Аристов С. Н., Просвиряков Е. Ю. Неоднородное конвективное течение Куэтта // Известия Российской академии наук. Механика жидкости и газа, 2016. № 5. С. 3-9. doi: 10.7868/S0568528116050030.
  21. Аристов С. Н., Просвиряков Е. Ю. Нестационарные слоистые течения завихренной жидкости // Изв. РАН. МЖГ, 2016. № 2. С. 25-31.
  22. Аристов С. Н., Просвиряков Е. Ю. О слоистых течениях плоской свободной конвекции // Нелинейная динам., 2013. Т. 9, № 4. С. 651-657. doi: 10.20537/nd1304004.
  23. Аристов С. Н., Просвиряков Е. Ю., Спевак Л. Ф. Нестационарная конвекция Бенара-Марангони слоистых течений вязкой несжимаемой жидкости // Теоретические основы химической технологии, 2016. Т. 50, № 2. С. 137-146. doi: 10.7868/S0040357116020019.
  24. Аристов С. Н., Просвиряков Е. Ю., Спевак Л. Ф. Нестационарная слоистая тепловая и концентрационная конвекция Марангони вязкой несжимаемой жидкости // Вычислительная механика сплошных сред, 2015. Т. 8, № 4. С. 445-456. doi: 10.7242/1999-6691/2015.8.4.38.
  25. Бурмашева Н. В., Просвиряков Е. Ю. Крупномасштабная слоистая стационарная конвекция вязкой несжимаемой жидкости под действием касательных напряжений на верхней границе. Исследование поля скоростей // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2017. Т. 21, № 1. С. 180-196. doi: 10.14498/vsgtu1527.
  26. Burmasheva N. V., Prosviryakov E. Yu. Exact solutions for layered large-scale convection induced by tangential stresses specified on the free boundary of a fluid layer // IOP Conference Series: Materials Science and Engineering, 2017. vol. 208, 012010. doi: 10.1088/1757-899X/208/1/012010.
  27. Бурмашева Н. В., Просвиряков Е. Ю. Точные решения для естественной конвекции слоистых течений вязкой несжимаемой жидкости при задании тангенциальных сил и линейного распределения температуры на границах слоя // Diagnostics, Resource and Mechanics of Materials and Structures, 2017. № 4. С. 16-31. doi: 10.17804/2410-9908.2017.4.016-031.
  28. Burmasheva N. V., Prosviryakov E. Yu. Exact solution for the layered convection of a viscous incompressible fluid at specified temperature gradients and tangential forces on the free boundary // AIP Conference Proceedings, 2017. vol. 1915, 040005. doi: 10.1063/1.5017353.
  29. Горшков А. В., Просвиряков Е. Ю. Слоистая конвекция Бенара-Марангони при теплообмене по закону Ньютона-Рихмана // Компьютерные исследования и моделирование, 2016. Т. 8, № 6. С. 927-940.
  30. Горшков А. В., Просвиряков Е. Ю. Аналитические решения стационарной сложной конвекции, описывающие поле касательных напряжений разного знака / Тр. ИММ УрО РАН, Т. 23, 2017. С. 32-41. doi: 10.21538/0134-4889-2017-23-2-32-41.
  31. Князев Д. В. Плоские течения вязкой бинарной жидкости между подвижными твердыми границами // ПМТФ, 2011. Т. 52, № 2. С. 66-72.
  32. Сидоров А. Ф. О двух классах решений уравнений механики жидкости и газа и их связи с теорией бегущих волн // ПМТФ, 1989. Т. 30, № 2. С. 34-40.
  33. Шварц К. Г. Плоскопараллельное адвективное течение в горизонтальном слое несжимаемой жидкости с твердыми границами // Изв. РАН. МЖГ, 2014. № 4. С. 26-30.
  34. Аристов С. Н., Шварц К. Г. Вихревые течения адвективной природы во вращающемся слое жидкости. Пермь: Перм. гос. ун-т, 2006. 155 с.
  35. Аристов С. Н., Шварц К. Г. Адвективное течение во вращающейся жидкой пленке // ПМТФ, 2016. Т. 57, № 1. С. 216-223. doi: 10.15372/PMTF20160121.
  36. Шварц К. Г. Влияние вращения на устойчивость адвективного течения в горизонтальном слое жидкости при малом значении числа Прандтля // Изв. РАН. МЖГ, 2005. № 2. С. 29-38.
  37. Шварц К. Г. Моделирование крупномасштабных и мезомасштабных процессов в бароклинной атмосфере и океане // Географический вестник, 2013. № 1(24). С. 72-77.
  38. Shtern V. Counterflows. Paradoxical Fluid Mechanics Phenomena. Cambridge: Cambridge University Press, 2012. 469 pp. doi: 10.1017/CBO9781139226516.
  39. Descartes R. La géométrie. Nouvelle éd. Avec le portrait de Descartes d’après Frans Hals. Paris: J. Hermann, 1927. 91 pp. (In French)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».