On the calculation of approximate symmetries of fractional differential equations
- Authors: Lukashchuk V.O.1, Lukashchuk S.Y.1
-
Affiliations:
- Ufa University of Science and Technology
- Issue: Vol 28, No 2 (2024)
- Pages: 247-266
- Section: Differential Equations and Mathematical Physics
- URL: https://journal-vniispk.ru/1991-8615/article/view/311004
- DOI: https://doi.org/10.14498/vsgtu2078
- EDN: https://elibrary.ru/CXTSHY
- ID: 311004
Cite item
Full Text
Abstract
A new algorithm for finding approximate symmetries for fractional differential equations with the Riemann–Liouville and Gerasimov–Caputo fractional derivatives, the order of which is close to an integer, is proposed. The algorithm is based on the expansion of the fractional derivative into a series with respect to a small parameter isolated from the order of fractional differentiation. In the first-order, such an expansion contains a nonlocal integrodifferential operator with a logarithmic kernel.
As a result, the original fractional differential equation is approximated by an integro-differential equation with a small parameter for which approximate symmetries can be found. A theorem is proved about the form of prolongation of one-parameter point transformations group to a new variable represented by a nonlocal operator included in the expansion of the fractional derivative. Knowing such a prolongation allows us to apply an approximate invariance criterion to the equation under consideration.
The proposed algorithm is illustrated by the problem of finding approximate symmetries for a nonlinear fractional filtration equation of subdiffusion type. It is shown that the dimension of approximate symmetries algebra for such an equation is significantly larger than the dimension of the algebra of exact symmetries. This fact opens the possibility of constructing a large number of approximately invariant solutions. Also, it is shown that the algorithm makes it possible to find nonlocal approximate symmetries of a certain type. This possibility is illustrated on a linear fractional differential subdiffusion equation.
Full Text
##article.viewOnOriginalSite##About the authors
Veronika O. Lukashchuk
Ufa University of Science and Technology
Email: voluks@gmail.com
ORCID iD: 0000-0002-3082-1446
https://www.mathnet.ru/person51946
Cand. Phys. & Math. Sci.; Associate Professor; Dept. of High Performance Computing Technologies and Systems
Russian Federation, 450076, Ufa, Zaki Validi st., 32Stanislav Yu. Lukashchuk
Ufa University of Science and Technology
Author for correspondence.
Email: lsu@ugatu.su
ORCID iD: 0000-0001-9209-5155
https://www.mathnet.ru/person44044
Dr. Phys. & Math. Sci., Associate Professor; Professor; Dept. of High Performance Computing Technologies and Systems
Russian Federation, 450076, Ufa, Zaki Validi st., 32References
- Ovsyannikov L. V. Group analysis of differential equations. New York, Academic Press, 1982, xvi+416 pp.
- Ibragimov N. H. Transformation Groups Applied to Mathematical Physics, Mathematics and Its Applications (Soviet Series), vol. 3. Dordrecht, D. Reidel Publ., 1985, xv+394 pp.
- Grigoriev Yu. N., Ibragimov N. H., Kovalev V. F., Meleshko S. V. Symmetries of Integro-Differential Equations. With Applications in Mechanics and Plasma Physics, Lecture Notes in Physics, vol. 806. Dordrecht, Springer, 2010, xiii+305 pp. DOI: https://doi.org/10.1007/978-90-481-3797-8.
- Samko S. G., Kilbas A. A., Marichev O. I. Fractional Integrals and Derivatives: Theory and Applications. New York, Gordon & Breach Sci. Publishers, 1993, xxxvi+976 pp.
- Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204. Amsterdam, Elsevier, 2006, xv+523 pp. DOI: https://doi.org/10.1016/s0304-0208(06)x8001-5.
- Uchaikin V. V. Metod drobnykh proizvodnykh [Method of Fractional Derivatives]. Ulyanovsk, Artishok, 2008, 512 pp. (In Russian)
- Gazizov R. K., Kasatkin A. A., Lukashchuk S. Yu. Symmetries and group invariant solutions of fractional ordinary differential equations, In: Handbook of Fractional Calculus with Applications, vol. 2, Fractional Differential Equations; eds. A. Kochubei, Yu. Luchko. Berlin, De Gruyter, 2019, pp. 65–90. DOI: https://doi.org/10.1515/9783110571660-004.
- Lukashchuk S. Yu. On the property of linear autonomy for symmetries of fractional differential equations and systems, Mathematics, 2022, vol. 10, no. 13, 2319. EDN: WBYZVC. DOI: https://doi.org/10.3390/math10132319.
- Hashemi M. S., Baleanu D. Lie Symmetry Analysis of Fractional Differential Equation. Boca Raton, CRC Press, 2020, xiii+208 pp. DOI: https://doi.org/10.1201/9781003008552.
- Gazizov R. K., Lukashchuk S. Yu. Approximations of fractional differential equations and approximate symmetries, IFAC-PapersOnLine, 2017, vol. 50, no. 1, pp. 14022–14027. EDN: XYGJKP. DOI: https://doi.org/10.1016/j.ifacol.2017.08.2426.
- Gazizov R. K., Lukashchuk S. Yu. Higher-order symmetries of a time-fractional anomalous diffusion equation, Mathematics, 2021, vol. 9, no. 3, 216. EDN: VEHQHB. DOI: https://doi.org/10.3390/math9030216.
- Baikov V. A., Gazizov R. K., Ibragimov N. Kh. Approximate symmetries, Math. USSR-Sb., 1989, vol. 64, no. 2, pp. 427–441. DOI: https://doi.org/10.1070/sm1989v064n02abeh003318.
- Baikov V. A., Gazizov R. K., Ibragimov N. H. Perturbation methods in group analysis, J. Soviet Math., 1991, vol. 55, no. 1, pp. 1450–1490. DOI: https://doi.org/10.1007/BF01097534.
- Ibragimov N. H. Transformation groups and Lie algebras. Hackensack, World Scientific, 2013, x+185 pp. DOI: https://doi.org/10.1142/8763.
- Lukashchuk S. Yu An approximate group classification of a perturbed subdiffusion equation, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2016, vol. 20, no. 4, pp. 603–619 (In Russian). EDN: YHPUVH. DOI: https://doi.org/10.14498/vsgtu1520.
- Lukashchuk V. O., Gavryushina L. O. Approximate Symmetries and Conservation Laws of Fractional Differential Generalization of the Burgers Equation, Math. Math. Model., 2019, no. 5, pp. 1–14 (In Russian). EDN: LCDIJL. DOI: https://doi.org/10.24108/mathm.0519.0000197.
- Lashkarian E., Motamednezhad A., Hejazi S. R. Invariance properties and conservation laws of perturbed fractional wave equation, Eur. Phys. J. Plus, 2021, vol. 136, 615. DOI: https://doi.org/10.1140/epjp/s13360-021-01595-6.
- Lashkarian E., Motamednezhad A., Hejazi S. R. Group analysis, invariance results, exact solutions and conservation laws of the perturbed fractional Boussinesq equation, Int. J. Geom. Methods Mod. Phys., 2023, vol. 20, no. 1, 2350013. DOI: https://doi.org/10.1142/S0219887823500135.
- Nadjafikhah M., Mirala M., Chaichi M. Approximate symmetries and conservation laws of forced fractional oscillator, Int. J. Nonlinear Anal. Appl., 2023, vol. 14, no. 2, pp. 195–205. DOI: https://doi.org/10.22075/ijnaa.2022.25979.3178.
- Tarasov V. E., Zaslavsky G. M. Dynamics with low-level fractionality, Physica A, 2006, vol. 368, no. 2, pp. 399–415. DOI: https://doi.org/10.1016/j.physa.2005.12.015.
- Tofighi A., Golestani A. A perturbative study of fractional relaxation phenomena, Physica A, 2008, vol. 387, no. 8–9, pp. 1807–1817. DOI: https://doi.org/10.1016/j.physa.2007.11.046.
- Tofighi A. An especial fractional oscillator, Int. J. Stat. Mech., 2013, vol. 2013, 175273. DOI: https://doi.org/10.1155/2013/175273.
- Vinogradov A. M., Krasil’shchik I. S. A method of computing higher symmetries of nonlinear evolution equations, and nonlocal symmetries, Soviet Math. Dokl., 1980, vol. 22, no. 1, pp. 235–239.
- Bluman G. W., Reid G. J., Kumei S. New classes of symmetries of partial differential equations, J. Math. Phys., 1988, vol. 29, no. 4, pp. 806–811. DOI: https://doi.org/10.1063/1.527974.
- Leach P.G.L., Andriopoulos K. Nonlocal symmetries past, present and future, Appl. Anal. Discrete Math., 2007, vol. 1, no. 1, pp. 150–171.
- Akhatov I. Sh., Gazizov R. K., Ibragimov N. Kh. Nonlocal symmetries. Heuristic approach, J. Soviet Math., 1991, vol. 55, no. 1, pp. 1401–1450. DOI: https://doi.org/10.1007/BF01097533.
- Bluman G. W., Cheviakov A. F., Anco S. C. Applications of Symmetry Methods to Partial Differential Equations, Applied Mathematical Sciences. New York, Springer, 2010, xix+398 pp. DOI: https://doi.org/10.1007/978-0-387-68028-6.
- Simmetrii i zakony sokhraneniia uravnenii matematicheskoi fiziki [Symmetries and Conservation Laws of Equations of Mathematical Physics], eds. A. M. Vinogradov, I. S. Krasil’shchik. Moscow, Factorial, 1997, 464 pp. (In Russian)
- Gazizov R. K., Kasatkin A. A., Lukashchuk S. Yu. Fractional differential equations: Change of variables and nonlocal symmetries, Ufa Math. J., 2012, vol. 4, no. 4, pp. 54–67.
- Ludu A. Nonlocal symmetries for time-dependent order differential equations, Symmetry, 2018, vol. 10, no. 12, 771. DOI: https://doi.org/10.3390/sym10120771.
Supplementary files
