Mathematical models of nonlinear dynamics of functionally graded nano/micro/macroscale porous closed cylindrical Kirchhoff-Love shells

Cover Page

Cite item

Full Text

Abstract

The article presents new mathematical models for the dynamics of nonlinear nano/micro/macro-scale functionally graded porous closed cylindrical shells. The Kirchhoff–Love hypothesis is chosen as the kinematic model for the shells. Geometric nonlinearity is considered according to the von Karman model. Nanoeffects are accounted for using by a modified moment theory of elasticity. Variational and differential equations, as well as boundary and initial conditions, are derived from Hamilton’s principle. A proof of the existence of a solution is conducted based on the theory of generalized solutions to differential equations (using methods of Hilbert spaces and variational methods).
As examples, nano/micro/macro-scale closed cylindrical shells are considered as systems with "almost" an infinite number of degrees of freedom subjected to banded transverse alternating loading. The Bubnov–Galerkin method in higher approximations is adopted as the method for reducing partial differential equations to the Cauchy problem. Its convergence is investigated.
The Cauchy problem is solved using Runge–Kutta methods of fourth to eighth order accuracy and the Newmark method. The application of several numerical methods at each stage of modeling is necessary to ensure the reliability of the obtained results. The study of complex oscillation characteristics of the closed cylindrical nano/micro/macro-scale shell is conducted using nonlinear dynamics methods, which involve constructing signals, phase portraits, applying Fourier analysis, and various wavelet transformations,
among which the Morlet wavelet proved to be the most informative.
An analysis of the type of chaotic oscillations is carried out based on the spectrum of Lyapunov exponents using the Sano–Sawada method and the dominant exponent through several methods: Kanca, Rosenstein, and Wolf. It is shown that the size-dependent parameter and the consideration of porosity have a significant impact on the nature of the oscillations of cylindrical shells. The phenomenon of hyper-chaos has been discovered.

About the authors

Tatiana V. Yakovleva

Yuri Gagarin State Technical University of Saratov

Author for correspondence.
Email: yan-tan1987@mail.ru
ORCID iD: 0000-0003-3238-2317
SPIN-code: 9900-0883
Scopus Author ID: 56435768900
ResearcherId: T-9860-2017
https://www.mathnet.ru/person53186

Cand. Phys. & Math. Sci.; Associate Professor; Dept. of Mathematics and Modeling

Russian Federation, 410054, Saratov, Polytechnicheskay st., 77

Vadim A. Krysko

Yuri Gagarin State Technical University of Saratov

Email: tak@san.ru
ORCID iD: 0000-0002-4914-764X
https://www.mathnet.ru/person33628

Dr. Tech. Sci., Professor; Head of Department; Dept. of Mathematics and Modeling

Russian Federation, 410054, Saratov, Polytechnicheskay st., 77

References

  1. Krysko V. A., Awrejcewicz J., Zhigalov M. V., et al. On the mathematical models of the Timoshenko-type multi-layer flexible orthotropic shells, Nonlinear Dyn., 2018, vol. 92, no. 4, pp. 2093–2118. EDN: XXZWWL. DOI: https://doi.org/10.1007/s11071-018-4183-4.
  2. Awrejcewicz J., Krysko V. A., Zhigalov M. V., Krysko A. V. Contact interaction of two rectangular plates made from different materials with an account of physical nonlinearity, Nonlinear Dyn., 2018, vol. 91, no. 3, pp. 1191–1211. EDN: GBOHTC. DOI: https://doi.org/10.1007/s11071-017-3939-6.
  3. Awrejcewicz J., Krysko V. A., Pavlov S. P., et al. Thermoelastic vibrations of a Timoshenko microbeam based on the modified couple stress theory, Nonlinear Dyn., 2020, vol. 99, no. 2, pp. 919–943. EDN: AGXVNQ. DOI: https://doi.org/10.1007/s11071-019-04976-w.
  4. Awrejcewicz J., Krysko A., Erofeev N., et al. Quantifying chaos by various computational methods. Part 1: Simple systems, Entropy, 2018, vol. 20, no. 3, 175. EDN: XXGLGX. DOI: https://doi.org/10.3390/e20030175.
  5. Amabili M., Balasubramanian P., Ferrari G. Travelling wave and non-stationary response in nonlinear vibrations of water-filled circular cylindrical shells: Experiments and simulations, J. Sound Vib., 2016, vol. 381, pp. 220–245. DOI: https://doi.org/10.1016/j.jsv.2016.06.026.
  6. Amabili M. Nonlinear Mechanics of Shells and Plates: Composite, Soft and Biological Materials. New York, Cambridge Univ. Press, 2018, xvi+568 pp. DOI: https://doi.org/10.1017/9781316422892.
  7. Birger I. A. Some general methods of solution for problems in the theory of plasticity, Prikl. Mat. Mekh., 1951, vol. 15, no. 6, pp. 765–770 (In Russian).
  8. Vorovich I. I, Krasovskii Yu. P. On a method of elastic solutions, Dokl. Akad. Nauk SSSR, 1959, vol. 126, no. 4, pp. 740–743 (In Russian).
  9. Volmir A. S. Nelineinaia dinamika plastin i obolochek [The Nonlinear Dynamics of Plates and Shells]. Moscow, Nauka, 1972, 432 pp. (In Russian)
  10. Hamilton W. R. On a general method in dynamics, Philos. Trans. R. Soc. Lond., 1834. part II, pp. 247–308.
  11. Washizu K. Variational Methods in Elasiticity and Plasticity, International Series of Monographs in Aeronautics and Astronautics, vol. 9. Oxford, Pergamon Press, 1968, x+349 pp.
  12. Fichera G. Boundary value problems of elasticity with unilateral constraints, In: C. Truesdell (eds) Linear Theories of Elasticity and Thermoelasticity. Berlin, Heidelberg, Springer, 1973, pp. 391–424. DOI: https://doi.org/10.1007/978-3-662-39776-3_4.
  13. Kupradze V. D., Gegelia T. G., Basheleishvili M. O., Burchuladze T. V. Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland Series in applied Mathematics and Mechanics, vol. 25. Amsterdam, New York, Oxford, North-Holland Publ., 1979, xix+929 pp.
  14. Lions J.-L. Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris, Dunod, Gauthier-Villars, 1969 (In French).
  15. Vorovich I. I., Aleksandrov V. M., Babenko V. A. Neklassicheskie smeshannye zadachi teorii uprugosti [Nonclassical Mixed Problems of Elasticity]. Moscow, Nauka, 1974, 455 pp. (In Russian)
  16. Morozov N. F. Izbrannye dvumernye zadachi teorii uprugosti [Selected Two-Dimensional Problems of the Elasticity Theory]. Leningrad, Leningrad State Univ., 1978, 182 pp. (In Russian)
  17. Kornishin M. S., Isanbaeva F. S. Gibkie plastiny i paneli [Flexible Plates and Panels]. Moscow, Nauka, 1968, 258 pp. (In Russian)
  18. Piechocki W. On the existence of solutions for heated non-linear orthotropic inhomogeneous shallow shells, Bull. Acad. Pol. Sci., Sér. Sci. Tech., 1969, vol. 17, pp. 597–601.
  19. Sobolev S. L. Applications of functional analysis in mathematical physics, Translations of Mathematical Monographs, vol. 7. Providence, R.I., American Mathematical Society, 1963, vii+239 pp.
  20. Vishik M. I. Quasi-linear strongly elliptic systems of differential equations in divergence form, Trans. Mosc. Math. Soc., 1963, vol. 12, pp. 140–208.
  21. Dubinskii Yu. A. Quasilinear elliptic and parabolic equations of arbitrary order, Russian Math. Surveys, 1968, vol. 23, no. 1, pp. 45–91. DOI: https://doi.org/10.1070/RM1968v023n01ABEH001233.
  22. Lions J.-L, Magenes E. Non-homogeneous boundary value problems and applications, vol. I. New York, Springer Verlag, 1972, xvi+357 pp.
  23. Cabrera-Covarrubias F. G., Gómez-Soberón J. M., Almaral-Sánchez J. L., et al. An experimental study of mortars with recycled ceramic aggregates: Deduction and prediction of the stress-strain, Materials, 2016, vol. 9, no. 12, 1029. DOI: https://doi.org/10.3390/ma9121029.
  24. Yang F., Chong A. C. M., Lam D. C. C., Tong P. Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 2002, vol. 39, no. 10, pp. 2731–2743. DOI: https://doi.org/10.1016/S0020-7683(02)00152-X.
  25. Yakovleva T. V., Awrejcewicz J., Kruzhilin V. S., Krysko V. A. On the chaotic and hyperchaotic dynamics of nanobeams with low shear stiffness, Chaos, 2021, vol. 31, no. 2, 023107. DOI: https://doi.org/10.1063/5.0032069.
  26. Yakovleva T. V., Awrejcewicz J., Krysko A. V., et al. Quantifying chaotic dynamics of nanobeams with clearance, Int. J. Non-Linear Mech., 2022, vol. 144, 104094. DOI: https://doi.org/10.1016/j.ijnonlinmec.2022.104094.
  27. Farokhi H., Ghayesh M. H. Nonlinear resonant response of imperfect extensible Timoshenko microbeams, Int. J. Mech. Mater. Des., 2017, vol. 13, no. 1, pp. 43–55. DOI: https://doi.org/10.1007/s10999-015-9316-z.
  28. Ke L. L., Wang Y. S., Yang J., Kitipornchai S. Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory, J. Sound Vib., 2012, vol. 331, no. 1, pp. 94–106. DOI: https://doi.org/10.1016/j.jsv.2011.08.020.
  29. Ma H. M., Gao X.-L., Reddy J. N. A non-classical Mindlin plate model based on a modified couple stress theory, Acta Mech., 2011, vol. 220, no. 1–4, pp. 217–235. DOI: https://doi.org/10.1007/s00707-011-0480-4.
  30. Gulick D. Encounters with Chaos. New York, McGraw-Hill Education, 1992.
  31. Rosenstein M. T., Collins J. J., De Luca C. J. A practical method for calculating largest Lyapunov exponents from small data sets, Phys. D: Nonl. Phen., 1993, vol. 65, no. 1–2, pp. 117–134. DOI: https://doi.org/10.1016/0167-2789(93)90009-P.
  32. Wolf A., Swift J. B., Swinney H. L., Vastano J A. Determining Lyapunov exponents from a time series, Phys. D: Nonl. Phen., 1985, vol. 16, no. 3, pp. 285–317. DOI: https://doi.org/10.1016/0167-2789(85)90011-9.
  33. Kantz H. A robust method to estimate the maximal Lyapunov exponent of a time series, Phys. Lett. A, 1994, vol. 185, no. 1, pp. 77–87. DOI: https://doi.org/10.1016/0375-9601(94)90991-1.
  34. Sano M., Sawada Y. Measurement of the Lyapunov spectrum from a chaotic time series, Phys. Rev. Lett., 1985, vol. 55, no. 10, 1082. DOI: https://doi.org/10.1103/PhysRevLett.55.1082.
  35. Hou F., Wu S., Moradi Z., Shafiei N. The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation, Engineering with Computers, 2022, vol. 38 (Suppl. 4), pp. 3217–3235. DOI: https://doi.org/10.1007/s00366-021-01456-x.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Load scheme of a closed cylindrical nanoshell

Download (167KB)
3. Figure 2. Dynamic characteristics of a cylindrical shell: a — signal at $q_0=0.185$; b — signal at $q_0=0.25$; c — Fourier power spectrum at $q_0=0.185$; d — Fourier power spectrum at $q_0=0.25$

Download (415KB)

Copyright (c) 2024 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».