EXTENDED MATHEMATICAL MODEL OF THE INVERSE PROBLEM OF NUCLEAR GAMMA-RESONANCE: RELIABILITY AND INFORMATIVE OF APPLICATION
- Authors: Nemtsova O.M.1, Konygin G.N.1, Veselkov I.S.1
-
Affiliations:
- Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences
- Issue: Vol 28, No 1 (2024)
- Pages: 152-170
- Section: Mathematical Modeling, Numerical Methods and Software Complexes
- URL: https://journal-vniispk.ru/1991-8615/article/view/311018
- DOI: https://doi.org/10.14498/vsgtu2060
- EDN: https://elibrary.ru/EKWSDV
- ID: 311018
Cite item
Full Text
Abstract
Research the properties of iron-based solid solutions by Mössbauer spectroscopy has the problem of interpreting the results of processing experimental data within the traditional mathematical model. Since the disordered solid solutions, for example, as a result of mechanical activation, are consisted of a set of the different local atomic configurations, the corresponding Mössbauer spectra contain a large number of the shifted relative to each other spectral components with close values of the hyperfine interaction parameters. The magnitude and sign of these shift are determined by many factors: the quantitative distribution of atoms of each type in the coordination spheres, the symmetry of their distribution relative to the quantization axis, the possible local shift relative to the average statistical position in the crystallographic structure, etc. In the mathematical model, as a rule, it’s not possible to taken into account all these effects of the shift by analytically.
The proposed extended mathematical model for describing the Mössbauer spectra of solid solutions makes it possible to take into account the shifts in the spectral components by using Gaussian normal distribution function, as a function of statistical set of local distortions. The width of the Gaussian distribution makes it possible to estimate the degree of local distortions of the crystal lattice that arise due to differences in the sizes of atoms of the mixed components, local distortions of the structure and
symmetry of the environment of the resonant atom.
The inverse problem of nuclear gamma-resonance is formulated by the Fredholm integral equation of the first kind and is an ill-posed problem with a priori constraints on the desired solution. The introduction of two Gaussian functions with a priori unknown linewidths into the kernel of the integral equation leads to the problem of solving the equation by classical methods. Algorithm for obtaining a reliable solution based on the Tikhonov regularization method with correction of the parameters of the kernel of the
integral equation is proposed in this paper. On the examples of the study of real objects, the reliability and informative application of the extended mathematical model of the inverse problem of nuclear gamma-resonance is proved.
Full Text
##article.viewOnOriginalSite##About the authors
Olga M. Nemtsova
Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: olganemtsova1968@gmail.com
ORCID iD: 0000-0002-5676-9578
SPIN-code: 7283-0512
https://www.mathnet.ru/person71968
Cand. Phys. & Math. Sci.; Associate Professor; Senior Researcher; Lab. of Physics and Chemistry of Nanomaterials
Russian Federation, 426067, Izhevsk, T. Baramzina str., 34Grigory N. Konygin
Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences
Email: gnkon@mail.ru
ORCID iD: 0000-0002-6202-9509
SPIN-code: 8815-4655
Scopus Author ID: 7004489371
https://www.mathnet.ru/person114235
Cand. Phys. & Math. Sci.; Head of Laboratory; Lab. of Physics and Chemistry of Nanomaterials
Russian Federation, 426067, Izhevsk, T. Baramzina str., 34Ivan S. Veselkov
Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences
Email: nerorus97@gmail.com
ORCID iD: 0009-0008-5590-6068
Postgraduate Student; Lab. of Physics and Chemistry of Nanomaterials
Russian Federation, 426067, Izhevsk, T. Baramzina str., 34References
- Hadef F., Otmani A., Djekoun A., Grenèche J. M. Investigation of mechanosynthesized Fe$_{50}$Ni$_{40}$Al$_{10}$ powders // J. Magn. Magn. Mater., 2013. vol. 343, pp. 214–220. DOI: https://doi.org/10.1016/j.jmmm.2013.04.074
- Hadef F., Otmani A., Djekoun A., Grenèche J. M. Mössbauer effect study of fine atomic structure of Fe$_{50}$Al$_{40}$Ni$_{10}$ powders // Superlattices Microstruct., 2012. vol. 51, no. 6. pp. 952–958. DOI: https://doi.org/10.1016/j.spmi.2012.03.015.
- Lomaeva S.F., Maratkanova A.N., Nemtsova O.M., Chulkina A.A., Elsukov E.P., Bokhonov B.B., Ancharov A.I. The formation of structure and phase composition and magnetic properties of Fe(Fe$_3$C, Fe$_5$SiC)-SiO$_2$ nanocomposites upon mechanical alloying // Phys. Met. Metallogr., 2010. vol. 109, no. 5. pp. 534-546. DOI: https://doi.org/10.1134/S0031918X10050145
- Lomayeva S. F., Nemtsova O. M., Yelsukov Ye. P., Maratkanova A. N., Ivanov N. V., Zagaynov A. V. Formation of Metastable Phases During Mechanical Activation of the Fe-Si Alloy in Liquid Organic Media // Chemistry for Sustainable Development, 2005. vol. 13, no. 2. pp. 257–286.
- Arzhnikov A. K., Dobysheva L. V., Konygin G. N., Elsukov E. P. Magnetic moments and hyperfine magnetic fields in ordered and disordered quasi-binary Fe$_{75}$(Si$_{1-x}$Ge$_x$)25 alloys // Phys. Solid State, 2005. vol. 47, no. 11. pp. 2063–2071. DOI: https://doi.org/10.1134/1.2131146.
- Shpinel' V. S. Rezonans gamma-luchey v kristallakh. M: Nauka, 1969. 407 p.
- Litvinov V.S., Karakishev S.D., Ovchinnikov V.V. Yadernaya gamma-rezonansnaya spektroskopiya splavov. M.: Metallurgiya, 1982. 144 p.
- Rusakov V. S. Mossbauerovskaya spektroskopiya lokal'no neodnorodnykh sistem, IYAF NYATS RK, 2000. 431 p.
- Elsukov E.P., Ul’yanov A.L., Porsev V.E., Kolodkin D.A., Zagainov A.V., Nemtsova O.M. Peculiarities of mechanical alloying of high-concentration Fe–Cr alloys // Phys. Met. Metallogr. 2018. vol. 119, no. 2. pp. 153-160. DOI: https://doi.org/10.1134/S0031918X17120055.
- Gladkov V. P., Kascheev V. A., Kouskov A. H., Petrov V. I. Mathematical method of allowance for distortions of the shape of the registered Mössbauer spectrum lines // J. Appl. Spectrosc., 2004. vol. 71, no. 5, pp. 731-735. DOI: https://doi.org/10.1023/B:JAPS.0000049636.15453.0c.
- Rusakov V. S., Pokatilov V. S., Gubaidulina T. V., Matsnev M. E. Hyperfine Magnetic Fields at the Nuclei of $^{57}$Fe in the Intermetallic System Zr$_{1–x}$Sc$_x$Fe$_2$ // Phys. Met. Metallogr., 2019. vol. 120, no. 4. pp. 339–344. DOI: https://doi.org/10.1134/S0031918X19040112.
- Boukherroub N., Guittoum A., Laggoun A., Hemmous M., Martínez-Blanco D., Blanco J.A., Souami N., Gorria P., Bourzami A., Lenoble O. Microstructure and magnetic properties of nanostructured (Fe$_{0.8}$Al$_{0.2}$)$_{100-x}$Si$_x$ alloy produced by mechanical alloying // J. Magn. Magn. Mater., 2015. vol. 385, pp. 151–159. DOI: https://doi.org/10.1016/j.jmmm.2015.03.011.
- Borrego J. M., Conde A., Peña-Rodríguez V. A., Grenèche J. M. A fitting procedure to describe Mössbauer spectra of FINEMET-type nanocrystalline alloys // Hyperfine Interact., 2000. vol. 131, no. 1–4. pp. 67–82. DOI: https://doi.org/10.1023/A:1010858927701.
- Djekoun A., Otmani A., Bouzabata B., Bechiri L., Randrianantoandro N., Greneche J. M. Synthesis and characterization of high-energy ball milled nanostructured Fe$_{50}$Ni$_{50}$ // Catal. Today, 2006. vol. 113, no. 3–4, pp. 235–239. DOI: https://doi.org/10.1016/j.cattod.2005.11.084.
- Gladkov V.P., Martynenko S.S., Petrov V.I. Refinement of the shape of the detected line in mössbauer spectra // J. Appl. Spectrosc., 2011. vol. 78, no. 2.pp. 296-300. DOI: https://doi.org/ 10.1007/s10812-011-9462-5.
- Chuev M. A. An efficient method of analysis of the hyperfine structure of gamma-resonance spectra using the Voigt profile // Doklady Physics, 2011. vol. 56, no. 6. pp. 318-322. DOI: https://doi.org/10.1134/S1028335811060097.
- Ida T., Ando M., Toraya H. Extended pseudo-Voigt function for approximating the Voigt profile // J. Appl. Crystallogr., 2000. vol. 33, no. 6. pp. 1311–1316. DOI: https://doi.org/10.1107/S0021889800010219.
- Baidakova N. V., Chernykh N. I., Koloskov V. M., Subbotin Y. N. A new algorithm for analysis of experimental Mössbauer spectra // Ural Math. J., 2017. vol. 3, no. 2. pp. 33–39. DOI: https://doi.org/10.15826/umj.2017.2.005.
- Li Z., Ping J. Y., Jin M. Z., Liu M. L. Distribution of Fe$^{2+}$ and Fe$^{3+}$ and next-nearest neighbour effects in natural chromites: Comparison between results of QSD and Lorentzian doublet analysis // Phys. Chem. Miner., 2002. vol. 29, no. 7. pp. 485–494. DOI: https://doi.org/10.1007/s00269-002-0258-2.
- Satuła D., Szymański K., Dobrzyńsk L. Maximum entropy method in Mössbauer spectroscopy - A problem of magnetic texture // Acta Phys. Pol. A, 2011. vol. 119, no. 1. pp. 78–80. DOI: https://doi.org/10.12693/APhysPolA.119.78.
- Konygin G. N., Nemtsova O. M., Porsev V. E. Mössbauer Spectra of Solid Solutions Processed Using the Voigt Function // J. Appl. Spectrosc., 2019. vol. 86, no. 3. pp. 409–415. DOI: https://doi.org/10.1007/s10812-019-00834-0.
- Konygin G. N., Nemtsova O. M. Use of a double convolution of Lorentz and Gaussian functions for processing Mössbauer spectra of supersaturated disordered solid solutions // J. Appl. Spectrosc., 2022. vol. 88, no. 6. pp. 1176–1182. DOI: https://doi.org/10.1007/s10812-022-01296-7.
- Sizikov V.S., Krivykh A.V. Reconstruction of continuous spectra by the regularization method using model spectra // Optics and Spectroscopy, 2014. vol. 117, no. 6. pp. 1010-1017. DOI: https://doi.org/10.1134/S0030400X14110162.
- Kiselev Ye. A. Sistemy tselochislennykh sdvigov, porozhdennyye svertkoy funktsiy Gaussa i Lorentsa // Vestnik VGU. Seriya: Fizika. Matematika, 2016. no. 4. pp. 43–50. (In Russian).
- Vasin V. V. Irregular nonlinear operator equations: Tikhonov’s regularization and iterative approximation // J. Inverse Ill-Posed Probl., 2013. vol. 21, no. 1. pp. 109–123. DOI: https://doi.org/10.1515/jip-2012-0084.
- Morozov V. A. O vosstanovlenii zashumlennykh signalov metodom regulyarizatsii // Vychislitel'nyye metody i programmirovaniye, 2012. vol. 13, no. 1. pp. 247–252.
- Nemtsova O. M., Ageev A. L., Voronina E. V. The estimation of the error of the hyperfine interaction parameter distribution from Mössbauer spectra // Nucl. Instrum. Methods Phys. Res., Sect. B., 2002. vol. 187, no. 1. pp. 132–136. DOI: https://doi.org/10.1016/S0168-583X(01)00830-8.
- Xiong X., Xue X. A fractional Tikhonov regularization method for identifying a space-dependent source in the time-fractional diffusion equation // Appl. Math. Comput., 2019. vol. 349, pp. 292–303. DOI: https://doi.org/10.1016/j.amc.2018.12.063.
- Voronina E. V., Ageev A. L., Nemtsova O. M., Yelsukov E. P. Algorithm of parameters correction for solving the inverse problem of Mössbauer spectroscopy // Czechoslov. J. Phys., 1997. vol. 47, no. 5. pp. 547–552. DOI: https://doi.org/10.1023/A:1021263524297.
- Matsnev M. E., Rusakov V. S. SpectrRelax: An application for Mössbauer spectra modeling and fitting // AIP Conf. Proc., 2012. vol. 1489, no. 1. pp. 178–185. DOI: https://doi.org/10.1063/1.4759488.
- Nemtsova O. M., Konygin G. N., Porsev V. E. Separation of overlapping spectral lines using the Tikhonov regularization method // J. Appl. Spectrosc., 2021. vol. 88, no. 2, pp. 373–381. DOI: https://doi.org/ 10.1007/s10812-021-01185-5.
- Edwards T. H., Stoll S. Optimal Tikhonov regularization for DEER spectroscopy // J. Magn. Reson., 2018. vol. 288, pp. 58–68. DOI: https://doi.org/10.1016/j.jmr.2018.01.021.
- Sizikov V.S., Stepanov A.V. Method of training examples in solving inverse ill-posed problems of spectroscopy // Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 6, pp. 1147–1154 DOI: https://doi.org/10.17586/2226-1494-2015-15-6-1147-1154.
- Vasin V. V., Ageev A. L. Nekorrektnyye zadachi s apriornoy informatsiyey. Yekaterinburg, 1993. 264 p. (In Russian).
- Ageev A. L., Antonova T. V., Voronina Ye. V. Metody utochneniya parametrov pri reshenii integral'nykh uravneniy 1 roda // Matem. modelirovaniye, 1996. no 12. pp. 110–124. (In Russian).
- Nemtsova O. M., Konygin G. N. Programma obrabotki mossbauerovskikh spektrov metodom regulyarizatsii Tikhonova s korrektsiyey parametrov sverkhtonkogo vzaimodeystviya, Svid. gos. reg. PrEVM № 2020667880, Rospatent (2020). (In Russian).
- Yagola A.G. Ill-posed problems with apriori information // Siberian Electronic Mathematical Reports, 2010. vol. 7 (Proceedings of Conferences) pp. 343–361.
- Tikhonov A. N., Arsenin V. YA. Metody resheniya nekorrektnykh zadach. M.: Nauka, 1970. 288 p. (In Russian).
- Yazovskikh K. A., Lomayeva S. F., Shakov A. A., Konygin G. N., Nemtsova O. M., Zagaynov A. V. Vliyaniye organicheskoy sredy razmola na strukturno-fazovyy sostav i korrozionnuyu stoykost' splavov Fe-Si // Khimicheskaya fizika i mezoskopiya, 2018. vol. 20, no. 2. pp. 284–296. (In Russian).
- Ivoylov N. G. Mossbauerovskaya spektroskopiya. Kazan', 2003. 93 p. (In Russian).
- AlOmar A. A. S. Line width at half maximum of the Voigt profile in terms of Gaussian and Lorentzian widths: Normalization, asymptotic expansion, and chebyshev approximation // Optik, 2020. vol. 203, 163919. DOI:https://doi.org/10.1016/J.IJLEO.2019.163919.
- Yazovskikh K. A., Lomayeva S. F., Shakov A. A., Konygin G. N., Nemtsova O. M. Surface modification of sendust powders prepared by ball milling // Mater. Today Proc., 2019. vol. 12, pp. 172–176. DOI: https://doi.org/10.1016/j.matpr.2019.03.090.
Supplementary files
