Mathematical modeling of the effect on the transfer of salt ions of changes in the dissociation/recombination rate constant in the diffusion layer of the ion-exchange membrane
- Authors: Nazarov R.R.1, Kovalenko A.V.1, Bostanov R.A.2, Urtenov M.K.1
-
Affiliations:
- Kuban State University
- Umar Aliev Karachay–Cherkess State University
- Issue: Vol 29, No 1 (2025)
- Pages: 109-128
- Section: Mathematical Modeling, Numerical Methods and Software Complexes
- URL: https://journal-vniispk.ru/1991-8615/article/view/311043
- DOI: https://doi.org/10.14498/vsgtu2101
- EDN: https://elibrary.ru/AZCCRJ
- ID: 311043
Cite item
Full Text
Abstract
This study presents a novel theoretical model of steady-state ion transport through cation-exchange membrane systems. Unlike existing theoretical approaches, the proposed model relates modifications in the equilibrium constant not only to the electric potential gradient, but also to spatial charge distribution. Analysis of the Poisson equation confirms the significant dependence of ion dissociation kinetics on local space charge density within the membrane structure.
The developed mathematical model, incorporating this dependence, enables a more accurate description of diffusion-migration processes in cationexchange membranes. The obtained results provide a more precise description of ion behavior under steady-state transport conditions — a crucial factor for developing advanced membrane materials and technological processes. The proposed model can be applied in various technological fields employing ion-exchange membrane systems, including water treatment processes and energy converters.
A key advantage of the proposed model is its capability for comprehensive consideration of critical ion transport parameters: solution ionic strength, temperature conditions, and membrane structural-functional characteristics. This enables more accurate prediction of membrane system performance in actual technological processes.
In particular, application of this model in membrane water purification systems allows optimization of demineralization processes, thereby enhancing water treatment efficiency while reducing energy consumption in the technological cycle.
Thus, the developed model offers new opportunities for both fundamental research and practical optimization of mass transfer processes in ionexchange membrane systems.
Full Text
##article.viewOnOriginalSite##About the authors
Roman R. Nazarov
Kuban State University
Email: r.nazarov1998@mail.ru
ORCID iD: 0009-0001-7280-0563
https://www.mathnet.ru/person213833
Postgraduate Research Student; Dept. of Data Analysis and Artificial Intelligence1
Russian Federation, 350040, Krasnodar, Stavropolskaya st., 149Anna V. Kovalenko
Kuban State University
Author for correspondence.
Email: savanna-05@mail.ru
ORCID iD: 0000-0002-3991-3953
SPIN-code: 3693-4813
Scopus Author ID: 55328224000
ResearcherId: P-1166-2015
http://www.mathnet.ru/person112835
Dr. Techn. Sci., Associate Professor; Head of Department; Dept. of Data Analysis and Artificial Intelligence1
Russian Federation, 350040, Krasnodar, Stavropolskaya st., 149Ramazan A. Bostanov
Umar Aliev Karachay–Cherkess State University
Email: bost-rasul@yandex.ru
ORCID iD: 0000-0002-8502-7653
https://www.mathnet.ru/person30830
Cand. Phys. & Math. Sci., Associate Professor; Dept. of Mathematical Analysis2
Russian Federation, 369202, Karachayevsk, Lenina st., 29Makhamet Kh. Urtenov
Kuban State University
Email: urtenovmax@mail.ru
ORCID iD: 0000-0002-0252-6247
https://www.mathnet.ru/person119069
Dr. Phys. & Math. Sci., Professor; Dept. of Applied Mathematics1
Russian Federation, 350040, Krasnodar, Stavropolskaya st., 149References
- Ershkov S., Burmasheva N. V., Leshchenko D. D., Prosviryakov E. Yu. Exact solutions of the Oberbeck–Boussinesq equations for the description of shear thermal diffusion of Newtonian fluid flows, Symmetry, 2023, vol. 15, no. 9, 1730. EDN: UXUKDI. DOI: https://doi.org/10.3390/sym15091730.
- Burmasheva N. V., Prosviryakov E. Yu. Exact solutions to the Oberbeck–Boussinesq equations for shear flows of a viscous binary fluid with allowance made for the Soret effect, Bulletin Irkutsk State Univ., Ser. Mathematics, 2021, vol. 37, pp. 17–30. EDN: NTNSFJ. DOI: https://doi.org/10.26516/1997-7670.2021.37.17.
- Burmasheva N. V., Prosviryakov E. Yu. Exact solution of the Couette–Poiseuille type for steady concentration flows, Uchen. Zap. Kazan. Univ., Ser. Fiziko-Matem. Nauki, 2022, vol. 164, no. 4, pp. 285–301 (In Russian). EDN: FXLLHT. DOI: https://doi.org/10.26907/2541-7746.2022.4.285-301.
- Bashurov V. V., Prosviryakov E. Yu. Steady thermo-diffusive shear Couette flow of incompressible fluid. Velocity field analysis, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2021, vol. 25, no. 4, pp. 763–775. EDN: AXCZUX. DOI: https://doi.org/10.14498/vsgtu1878.
- Burmasheva N. V., Prosviryakov E. Yu. Influence of the Dufour effect on shear thermal diffusion flows, Dynamics, 2022, vol. 2, no. 4, pp. 367–379. EDN: NGVOBP. DOI: https://doi.org/10.3390/dynamics2040021.
- Shel’deshov N. V. Processes of Hydrogen and Hydroxyl Ions in Ion-Exchange Membrane Systems, Doctoral dissertation in Chemical Sciences (Specialty: 02.00.05 — Electrochemistry). Krasnodar, Kuban State Univ., 2002, 405 pp. (In Russian). EDN: NNNGQN.
- Nikonenko V. V., Pis’menskaya N. D., Volodina E. I. Rate of generation of ions H+- and OH− at the ion-exchange membrane/dilute solution interface as a function of the current density, Russ. J. Electrochem., 2005, vol. 41, no. 11, pp. 1205–1210. EDN: LJAQQR. DOI: https://doi.org/10.1007/s11175-005-0203-z.
- Grebennikov V. P., Pivovarov N. Ya., Kovarsky N. Ya., et al. Bipolar Ion-Exchange Membrane, USSR Patent SU 745193 A1, IPC C25B 13/04. Appl. 2665517, 1978-09-18; publ. 1990-04-15 (In Russian). EDN: VNZYHP.
- Golovnya V. A., Kapustin A. F., Smirnova N. M., et al. Process for Inorganic Acid Regeneration, USSR Patent SU 865321 A1, IPC B01D 13/00. Appl. 2867388, 1980-01-04; publ. 1981-09-23 (In Russian). EDN: GSAAWG.
- Smagin V. N., Chukhin V. A., Medvedev I. N., Shchekotov P. D. Water Desalination Electrodialyzer, USSR Patent SU 971403 A1, IPC B01D 13/02. Appl. 3275226, 1981-04-10; publ. 1982-11-07 (In Russian). EDN: STKKOM.
- Grebennikov V. P., Pivovarov N. Ya., Latskov V. L., et al. Bipolar Ion-Exchange Membrane, USSR Patent SU 1150989 A1, IPC C25B 13/00, B01D 69/00. Appl. 3634930, 1983-07-22; publ. 1990-11-15 (In Russian). EDN: UYAFXH.
- Rubinshtein I., Maletzki F. Electroconvection at an electrically inhomogeneous permselective membrane surface, J. Chem. Soc., Faraday Trans., 1991, vol. 87, no. 13, pp. 2079–2087. DOI: https://doi.org/10.1039/FT9918702079.
- Rubinshtein I., Zaltzman B., Pretz J., Linder C. Experimental verification of the electroosmotic mechanism of overlimiting conductance through a cation exchange electrodialysis membrane, Rus. J. Electrochem., 2002, vol. 38, no. 8, pp. 853–863. EDN: VBRMLJ. DOI: https://doi.org/10.1023/A:1016861711744.
- Grebennikov V. P., Pivovarov N. Ya., Latckov V. L., et al. Electrodialyzer, USSR Patent SU 1237230 A1, IPC B01D 13/02. Appl. 3736135, 1984-05-04; publ. 1986-06-15 (In Russian). EDN: LHEPGD.
- Mareev S. A., Evdochenko E., Wessling M., et al. A comprehensive mathematical model of water splitting in bipolar membranes: Impact of the spatial distribution of fixed charges and catalyst at bipolar junction, J. Membr. Sci., 2020, vol. 603, 118010. EDN: AJNNIW. DOI: https://doi.org/10.1016/j.memsci.2020.118010.
- Kovalenko A. V., Uzdenova A. M., Ovsyannikova A. V., et al. Mathematical modeling of the effect of spacers on mass transfer in electromembrane systems, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2022, vol. 26, no. 3, pp. 520–543 (In Russian). EDN: JWREJU. DOI: https://doi.org/10.14498/vsgtu1944.
- Kazakovtseva E. V., Kovalenko A. V., Pismenskiy A. V., Urtenov M. Kh. Hybrid numericalanalytical method for solving the problems of salt ion transport in membrane systems with axial symmetry, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2024, vol. 28, no. 1, pp. 130–151 (In Russian). EDN: BOXTTX. DOI: https://doi.org/10.14498/vsgtu2043.
- Newman J. S. Electrochemical Systems. Hoboken, N.J., John Wiley & Sons, Inc., 2004, xx+647 pp.
- Urtenov M. K., Kovalenko A. V., Sukhinov A. I., et al. Model and numerical experiment for calculating the theoretical current-voltage characteristic in electro-membrane systems, IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 680, pp. 012030. EDN: AUNMRR. DOI: https://doi.org/10.1088/1757-899X/680/1/012030.
- Kovalenko A. V., Nikonenko V. V., Chubyr N. O., Urtenov M. Kh. Mathematical modeling of electrodialysis of a dilute solution with accounting for water dissociation-recombination reactions, Desalination, 2023, vol. 550, 116398. EDN: UCCTJU. DOI: https://doi.org/10.1016/j.desal.2023.116398.
- Uzdenova A. M., Kovalenko A. V., Urtenov M. K., Nikonenko V. V. Theoretical analysis of the effect of ion concentration in solution bulk and at membrane surface on the mass transfer at overlimiting currents, Russ. J. Electrochem., 2017, vol. 53, no. 11, pp. 1254–1265. EDN: XXDDNZ. DOI: https://doi.org/10.1134/S1023193517110179.
- Kovalenko A. V., Yzdenova A. M., Sukhinov A. I., et al. Simulation of galvanic dynamic mode in membrane hydrocleaning systems taking into account space charg, AIP Conf. Proc., 2019, vol. 2188, 050021. EDN: YHCGZX DOI: https://doi.org/10.1063/1.5138448.
Supplementary files
