Impact interaction between granular media and a rod with conical head
- Authors: Kochetkov A.V.1, Modin I.A.1, Balandin V.V.1, Balandin V.V.1, Bessmertnyi K.D.1
-
Affiliations:
- Research Institute of Mechanics, National Research Lobachevsky State University of Nizhny Novgorod
- Issue: Vol 29, No 3 (2025)
- Pages: 430-447
- Section: Mechanics of Solids
- URL: https://journal-vniispk.ru/1991-8615/article/view/349681
- DOI: https://doi.org/10.14498/vsgtu2157
- EDN: https://elibrary.ru/WTDEIJ
- ID: 349681
Cite item
Full Text
Abstract
Numerical modeling of impact interaction between a non-deformable conical body and a porous layer has been performed. The porous layer is reprsented as an assembly of discrete elements, whose motion and deformation are described using a mesh-free discrete element method (DEM). This approach interprets elements as particles with defined elastic properties, enabling effective simulation of processes involving large displacements and material discontinuity, unlike conventional mesh-based methods. The fundamental principles of DEM, which has gained widespread adoption due to advances in computational technologies, are presented. The numerical model and calculation methodology are described in detail. Simulation results are presented for normal high-velocity interaction between a deformable porous medium (composed of particles) and an elastic rod with a conical contact surface. Coulomb friction at the interface between the porous medium and conical surface is accounted for. The contact forces exerted by the discrete medium on the elastic conical body are evaluated. The numerical results are compared with experimental data obtained from reverse ballistic experiments where a container with porous material is projected against a stationary rod at various initial velocities.
Full Text
##article.viewOnOriginalSite##About the authors
Anatoliy V. Kochetkov
Research Institute of Mechanics, National Research Lobachevsky State University of Nizhny Novgorod
Email: kochetkov@mech.unn.ru
ORCID iD: 0000-0001-7939-8207
Scopus Author ID: 23004869700
https://www.mathnet.ru/rus/person32889
Doctor of Physical and Mathematical Sciences; Head of the Laboratory; Lab. of Dynamics of Multicomponent Media
Russian Federation, 603022, Nizhny Novgorod, pr. Gagarina, 23Ivan A. Modin
Research Institute of Mechanics, National Research Lobachevsky State University of Nizhny Novgorod
Author for correspondence.
Email: mianet@mail.ru
ORCID iD: 0000-0002-3561-4606
Scopus Author ID: 57192279101
ResearcherId: E-9088-2019
https://www.mathnet.ru/rus/person138504
Candidate of Technical Sciences; Senior Researcher; Lab. of Physical and Mechanical Testing of Materials
Russian Federation, 603022, Nizhny Novgorod, pr. Gagarina, 23Vladimir V. Balandin
Research Institute of Mechanics, National Research Lobachevsky State University of Nizhny Novgorod
Email: vbalandin99@gmail.com
ORCID iD: 0000-0002-3907-3480
https://www.mathnet.ru/rus/person189695
Candidate of Physical and Mathematical Sciences; Leading Researcher; Lab. of Multicomponent Media Dynamics
Russian Federation, 603022, Nizhny Novgorod, pr. Gagarina, 23Vladimir Vl. Balandin
Research Institute of Mechanics, National Research Lobachevsky State University of Nizhny Novgorod
Email: rustydog2007@yandex.ru
ORCID iD: 0000-0003-3061-8875
https://www.mathnet.ru/rus/person189694
Candidate of Technical Sciences; Leading Researcher; Lab. of Dynamic Testing of Materials
Russian Federation, 603022, Nizhny Novgorod, pr. Gagarina, 23Kirill D. Bessmertnyi
Research Institute of Mechanics, National Research Lobachevsky State University of Nizhny Novgorod
Email: besskirill@gmail.com
ORCID iD: 0009-0003-0515-4375
https://www.mathnet.ru/rus/person231443
Junior Researcher; Lab. of Multicomponent Media Dynamics
Russian Federation, 603022, Nizhny Novgorod, pr. Gagarina, 23References
- Gel’fand B. E., Sil’nikov M. V. Fugasnyye effekty vzryvov [High-Explosive Effects of Blasts]. St. Petersburg, Poligon, 2002, 272 pp. (In Russian)
- Gel’fand B. E., Gubanov A. V., Timofeev E. I. Interaction of shock waves in air with a porous screen, Fluid Dyn., 1984, vol. 18, no. 4, pp. 561–566. EDN: XUXOUW. DOI: https://doi.org/10.1007/BF01090621.
- Gel’fand B. E., Medvedev S. P., Polenov A. N., Frolov S. M. Transmission of a shock load by bulk media, J. Appl. Mech. Tech. Phys., 1988, vol. 29, no. 2, pp. 268–273. DOI: https://doi.org/10.1007/BF00908593.
- Glam B., Igra O., Britan A., Ben-Dor G. Dynamics of stress wave propagation in a chain of photoelastic discs impacted by a planar shock wave; Part I, experimental investigation, Shock Waves, 2007, vol. 17, no. 1, pp. 1–14. DOI: https://doi.org/10.1007/s00193-007-0094-x.
- Ben-Dor G., Britan A., Elperin T., et al. Mechanism of compressive stress formation during weak shock waves impact with granular materials, Exp. Fluids, 1997, vol. 22, pp. 507–518. DOI: https://doi.org/10.1007/s003480050078.
- Britan A., Ben-Dor G., Igra O., Shapiro H. Shock waves attenuation by granular filters, Int. J. Multiph. Flow, 2001, vol. 27, no. 4, pp. 617–634. DOI: https://doi.org/10.1016/S0301-9322(00)00048-3.
- Britan A., Ben-Dor G. Shock tube study of the dynamical behavior of granular materials, Int. J. Multiph. Flow, 2006, vol. 32, no. 5, pp. 623–642. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2006.01.007.
- Britan A., Ben-Dor G., Igra O., Shapiro H. Development of a general approach for predicting the pressure fields of unsteady gas flows through granular media, J. Appl. Phys., 2006, vol. 99, 093519. DOI: https://doi.org/10.1063/1.2197028.
- Britan A., Elperin T., Igra O., Jiang J. P. Head-on collision of a planar shock wave with a granular layer, AIP Conf. Proc., 1996, vol. 370, pp. 971–974. DOI: https://doi.org/10.1063/1.50571.
- Milyavskii V. V., Fortov V. E., Frolova A. A., et al. On the mechanism of pressure increase with increasing porosity of the media compressed in conical and cylindrical targets, Comput. Math. Math. Phys., 2010, vol. 50, no. 12, pp. 2082–2094. EDN: OHPYBN. DOI: https://doi.org/10.1134/S0965542510120109.
- Ruan H. H., Gao Z. Y., Yu T. X. Crushing of thin-walled spheres and sphere arrays, Int. J. Mech. Sci., 2006, vol. 48, no. 2, pp. 117–133. DOI: https://doi.org/10.1016/j.ijmecsci.2005.08.006.
- Clift R., Grace J. R., Weber M. E. Particles, Bubbles and Drops. New York, Academic Press, 1978, 394 pp.
- Cundall P. A., Strack O. D. L. A discrete numerical model for granular assemblies, Géotechnique, 1979, no. 1, pp. 47–65. DOI: https://doi.org/10.1680/geot.1979.29.1.47.
- Sommerfeld M. Theoretical and Experimental Modelling of Particulate Flow: Overview and Fundamentals, Lecture Series No. 2000-6. Rhode-Saint-Genése, Belgium, Von Karman Institute for Fluid Mechanics, 2000, 62 pp.
- Johnson K. L. Contact Mechanics. Cambridge, Cambridge Univ. Press, 1987, xii+452 pp. DOI: https://doi.org/10.1017/CBO9781139171731.
- Walton O. R. Numerical simulation of inelastic frictional particle-particle-interactions, In: Particulate Two-Phase Flow; ed. M.C. Roco. Stoneham, MA, Butterworth–Heinemann, 1993, pp. 884–911.
- Di Renzo A., Di Maio F. P. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes, Chem. Eng. Sci., 2004, no. 3, pp. 525–541. DOI: https://doi.org/10.1016/j.ces.2003.09.037.
- Pöschel T., Schwager T. Computational Granular Dynamics. Models and Algorithms. Berlin, Springer, 2005, x+322 pp. DOI: https://doi.org/10.1007/3-540-27720-X.
- Walton O. R., Braun R. L. Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks, J. Rheol., 1986, vol. 30, no. 5, pp. 949–980. DOI: https://doi.org/10.1122/1.549893.
- Kloss C., Goniva C., Hager A., et al. Models, algorithms and validation for opensource DEM and CFD-DEM, Prog. Comput. Fluid Dyn., 2012, vol. 12, no. 2–3, pp. 140–152. DOI: https://doi.org/10.1504/pcfd.2012.047457.
- Schwager T., Poschel T. Coefficiet of restitution and linear–dashpot model revisited, Granul. Matter, 2007, vol. 9, no. 6, pp. 465–469. DOI: https://doi.org/10.1007/s10035-007-0065-z.
- Zhu H. P., Zhou Z. Y., Yang R. Y., Yu A. B. Discrete particle simulation of particulate systems: A review of major applications and findings, Chem. Eng. Sci., 2008, vol. 63, no. 23, pp. 5728–5770. DOI: https://doi.org/10.1016/j.ces.2008.08.006.
- Ai J., Chen J.-F., Rotter J. M., Ooi J. Y. Assessment of rolling resistance models in discrete element simulations, Powder Technol., 2011, vol. 206, no. 3, pp. 269–282. DOI: https://doi.org/10.1016/j.powtec.2010.09.030.
- Modin I. A., Balandin Vl. Vl. Experimental studies of the interaction of strikers with granular layers of metal balls, Probl. Strength Plast., 2023, vol. 85, no. 4, pp. 539–550 (In Russian). EDN: MRZLIY. DOI: https://doi.org/10.32326/1814-9146-2023-85-4-539-550.
- Tsuji T., Yabumoto K., Tanaka T. Spontaneous structures in three-dimensional bubbling gas-fluidized bed by parallel DEM–CFD coupling simulation, Powder Technol., 2008, vol. 184, no. 2, pp. 132–140. DOI: https://doi.org/10.1016/j.powtec.2007.11.042.
- Zhou Z., Zhu H., Yu A., et al. Discrete particle simulation of gas–solid flow in a blast furnace, Comput. Model. Eng. Sci., 2008, vol. 32, no. 8, pp. 1760–1772. DOI: https://doi.org/10.1016/j.compchemeng.2007.08.018.
- Kochetkov A. V., Leontev N. V., Modin I. A. Numerical simulation of quasistatic and dynamic compression of a granular layer, AIP Conf. Proc., 2019, vol. 2116, 270003. EDN: LYDUXA. DOI: https://doi.org/10.1063/1.5114277.
- Zhu H. P., Zhou Z. Y., Yang R. Y., Yu A. B. Discrete particle simulation of particulate systems: Theoretical developments, Chem. Eng. Sci., 2007, vol. 62, no. 13, pp. 3378–3396. DOI: https://doi.org/10.1016/j.ces.2006.12.089.
- Modin I. A., Kochetkov A. V., Glazova E. G. Numerical simulation of the interaction of a shock wave with a permeable deformable granulated layer, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2022, vol. 26, no. 1, pp. 79–92 (In Russian). EDN: FUXBZE. DOI: https://doi.org/10.14498/vsgtu1879.
- Glazova E. G., Kochetkov A. V., Lisitsyn A. A., Modin I. A. Numerical simulation of the interaction of a deformable gas permeable fragment of a granular layer with a shock wave in a three-dimensional formation, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2023, vol. 27, no. 4, pp. 645–658 (In Russian). EDN: CFAYCE. DOI: https://doi.org/10.14498/vsgtu2007.
- Kochetkov A. V., Modin I. A. Numerical simulation of the interaction of a shock wave with a permeable granulated layer, In: Behav. Mater. Impact Explos. High Press. Dyn. Strain Rates, Advanced Structured Materials, 176; eds. M. Yu. Orlov, P. M. Visakh. Cham, Springer, 2023, pp. 129–143. DOI: https://doi.org/10.1007/978-3-031-17073-7_9.
- Abuziarov M. H., Glazova E. G., Kochetkov A. V., et al. Simulation of the interaction of waves with granulated layers in shock tubes, In: Proc. XII All Russ. Sci. Conf. Curr. Issues Contin. Mech. Celest. Mech., Springer Proceedings in Physics, 412; eds. M. Yu. Orlov, P. M. Visakh. Singapore, Springer, 2024, pp. 122–127. DOI: https://doi.org/10.1007/978-981-97-1872-6_18.
- Kochetkov A. V., Leontev N. V., Modin I. A., Savikhin A. O. Study of the stress-strain and strength properties of the metal woven grids, Tomsk State Univ. J. Math. Mech., 2018, vol. 52, pp. 53–62 (In Russian). EDN: XNHSEX. DOI: https://doi.org/10.17223/19988621/52/6.
- Bragov A. M., Konstantinov A. U., Kochetkov A. V., et al. Experimental study of deformation properties of a bulk layer from plumbum balls under dynamic and quasistatic loading, PNRPU Mechanics Bulletin, 2017, vol. 4, pp. 16–27 (In Russian). EDN: YLDACI. DOI: https://doi.org/10.15593/perm.mech/2017.4.02.
- Sukhanov M. V., Velmuzhov A. P., Stepanov B. S., et al. The Ga$_{20}$Ge$_{20}$Se$_{60}$ glass-ceramics as a promising long-wave IR optical material, J. Non-Cryst. Solids, 2022, vol. 590, 121700. EDN: KBTUAI. DOI: https://doi.org/10.1016/j.jnoncrysol.2022.121700.
- Telegin S. V., Kirillova N. I., Modin I. A., Suleimanov E. V. Effect of particle size distribution on functional properties of Ce$_{0.9}$Y$_{0.1}$O$_{2-d}$ ceramics, Ceram. Int., 2021, vol. 47, no. 12, pp. 17316–17321. EDN: RLZNQO. DOI: https://doi.org/10.1016/j.ceramint.2021.03.043.
- Laoucine A., Bachene M., Rechak S., et al. Perforation analysis by punching of metal sheets, Ann. Chim. Sci. Matér., 2022, vol. 46, no. 1, pp. 1–8. DOI: https://doi.org/10.18280/ACSM.460101.
- Wang D., Liu E., Zhang D., et al. An elasto-plastic constitutive model for frozen soil subjected to cyclic loading, Cold Reg. Sci. Technol., 2021, vol. 189, 103341. DOI: https://doi.org/10.1016/j.coldregions.2021.103341.
- Modin I. A., Kochetkov A. V., Poverennov E. Yu. Numerical and experimental study nonlinear compression packages of metal meshs, Probl. Strength Plast., 2022, vol. 84, no. 2, pp. 236–246 (In Russian). EDN: FTNGAQ. DOI: https://doi.org/10.32326/1814-9146-2022-84-2-236-246.
- Balandin V. V., Kochetkov A. V., Krylov S. V., Modin I. A. Numerical and experimental study of the penetration of a package of woven metal grid by a steel ball, J. Phys.: Conf. Ser, 2019, vol. 1214, 12004. EDN: SLQSSR. DOI: https://doi.org/10.1088/1742-6596/1214/1/012004.
Supplementary files










