The Influence of Noise on the Synchronization of Oscillations of Convective Currents
- 作者: Tiulkina I.V.1, Goldobin D.S.1,2
-
隶属关系:
- Institute of Continuous Media Mechanics UB RAS
- Perm State University
- 期: 编号 4 (67) (2024)
- 页面: 65-77
- 栏目: Mechanics
- URL: https://journal-vniispk.ru/1993-0550/article/view/307293
- DOI: https://doi.org/10.17072/1993-0550-2024-4-65-77
- ID: 307293
如何引用文章
全文:
详细
In this work, we study the Soret-driven convection of a two-component liquid in adjacent rectangular cells of a porous medium heated from below, taking into account the influence of random thermal fluctuations of external conditions. Two cases are considered: a spatially regular heat influx and a spatially irregular heat influx. We obtain stochastic equations for the dynamics of oscillation phases. Within the framework of these phase equations, we study the problem of the degree of synchrony of oscillations of convective currents in coupled cells using circular cumulants.
作者简介
I. Tiulkina
Institute of Continuous Media Mechanics UB RAS
编辑信件的主要联系方式.
Email: irinatiulkina95@gmail.com
Candidate of Physical and Mathematical Sciences, junior researcher 1, Akademika Koroleva St., Perm, Russia, 614013
D. Goldobin
Institute of Continuous Media Mechanics UB RAS; Perm State University
Email: irinatiulkina95@gmail.com
Candidate of Physical and Mathematical Sciences, Head of Laboratory of underground sequestration of carbon, Associated Professor at Theoretical Physics department 1, Akademika Koroleva St., Perm, Russia, 614013; 15, Bukireva St., Perm, Russia, 614990
参考
- Acebrón, J. A., Bonilla, L. L., Vicente, C. J. P., et al. (2005), "The Kuramoto model: A simple paradigm for synchronization phenomena", Reviews of Modern Physics, vol. 77, no. 1, pp. 137. URL: https://doi.org/10.1103/RevModPhys.77.137.
- Pikovsky, A., Rosenblum, M. and Kurths J. (2001), Synchronization. A universal concept in nonlinear sciences, Cambridge University Press, UK.
- Kuramoto, Y. (2003), Chemical Oscillations, Waves, and Turbulence, Dover, New York, USA.
- Nakao, H. (2016), "Phase reduction approach to synchronization of nonlinear oscillators", Contemporary Physics, vol. 57, pp. 188–214.
- URL: https://doi.org/10.1080/00107514.2015.1094987.
- Bogolyubov, N. N. and Mitropol'skiy, Yu. A. (1974), Asimptoticheskiye metody v teorii nelineynykh kolebaniy [Asymptotic methods in the theory of nonlinear oscillations], Nauka, Moscow, Russia.
- Andronov, A. A., Vitt, A. A. and Khaykin, S. E. (1981), Teoriya kolebaniy [Oscillation theory], Nauka, Moscow, Russia.
- Tyulkina, I. V., Goldobin, D. S. (2023), "Synchronization of convective currents of a two-component fluid in adjacent porous cells", Bulletin of Perm University. Physics, no. 2, pp. 59–68. URL: https://doi.org/10.17072/1994-3598-2023-2-59-68.
- Goldobin D.S., Lyubimov, D.V. (2007), "Soret-Driven Convection of Binary Mixture in a Horizontal Porous Layer in the Presence of a Heat or Concentration Source", Journal of Experimental and Theoretical Physics, vol. 104, no. 5, pp. 830-836.
- Hart, J. E. (1983), "A note on the stability of low-Prandtl-number Hadley circulations", Journal of Fluid Mechanics, vol. 132, pp. 271–281.
- URL: https://doi.org/10.1017/S0022112083001603.
- Gershuni, G. Z. and Zhukhovitskii, E. M. (1976), Convective stability of incompressible fluids, Jerusalem, Israel: Keter Publishing House.
- Gershuni, G.Z., Zhukhovitsky, E.M. and Nepomnyashchy, A.A. (1989), Stability of convective flows [Ustoychivost' konvektivnykh techeniy], Nauka, Moscow, Russia.
- Nield, D. A. and Bejan, A. (1998), Convetion in Porous Media, New-York: Springer Verlag, USA. URL: https://doi.org/10.1007/978-1-4757-3033-3.
- Goldobin, D. S., Tyulkina, I. V., Klimenko, L. S. and Pikovsky, A. (2018), "Collective mode reduc-tions for populations of coupled noisy oscillators", Chaos, vol. 28. pp. 101101. URL: https://doi.org/10.1063/1.5053576.
- Goldobin, D.S., Dolmatova, A.V., Rosenblum, M. and Pikovsky, A. (2017), "Synchronization in Kuramoto–Sakaguchi ensembles with competing influence of common noise and global coupling", Izvestiya VUZ. Applied Nonlinear Dynamics, vol. 25, no. 6, pp. 5–37. URL: https://doi.org/10.18500/0869-6632-2017-25-6-5-37.
- Goldobin, D. S., Teramae, J.-N., Nakao, H. and Ermentrout, G. B. (2010), "Dynamics of Limit-Cycle Oscillators Subject to General Noise", Physical Review Letters, vol. 105. pp. 154101. URL: https://doi.org/10.1103/PhysRevLett.105.154101.
- Tyulkina, I. V., Goldobin, D. S., Klimenko, L. S., Poperechny, I. S. and Raikhe, Y. L. (2020), "Collective in-plane magnetization in a two-dimensional XY macrospin system within the framework of generalized Ott–Antonsen theory", Philosophical Transactions: Mathematical, Physical and Engineering Sciences (Series A), vol. 378, no. 2171, pp. 20190259. URL: https://doi.org/10.1098/rsta.2019.0259.
- Ott, E., Antonsen, T. M. (2008), "Low dimensional behavior of large systems of globally coupled oscillators", Chaos, vol. 18. pp. 037113.
- URL: https://doi.org/10.1063/1.2930766.
- Bertini, L., Giacomin, G. and Pakdaman, K. (2010), "Dynamical aspects of mean field plane rotators and the Kuramoto model", Journal of Statistical Physics, vol. 138. pp. 270-290. URL: https://doi.org/10.1007/s10955-009-9908-9.
补充文件


