Influence of dynamic characteristics of the turning process on the workpiece surface roughness

Cover Page

Cite item

Full Text

Abstract

Introduction. The formation of the surface of a part when processing it on a metal-cutting machine is based on properly selected cutting modes. Complex methods of ensuring the specified quality of the part surface also take into account the tool geometry, its condition, and include corrections for tool deviation from the trajectory set by the CNC system under the influence of kinematic disturbances and spindle wavering. Subject. The paper analyzes the relationship between cutting modes and dynamic characteristics of the turning process, and its mapping into surface roughness. The aim of the work is to evaluate the influence of technological cutting modes taking into account the vibration activity of the tool on the roughness of the machined surface by means of simulation modeling. Method and methodology. Mathematical simulation of the dynamics of the cutting process is given, on the basis of which a digital simulation model is built. A methodology of using the simulation model for determining optimal cutting modes and predicting surface roughness taking into account tool vibrations is proposed. By means of experiments and analysis of the frequency characteristics of tool vibrations, the created model is validated, parameters of the cutting forces model subsystem and dynamic tool subsystem are specified, and geometrical topologies of the part surface are constructed. The calculated cutting forces are compared with experimental forces, and similar patterns and levels of characteristics are observed. An assessment of the optimality of the selected cutting modes is proposed based on the analysis of the tool vibration spectrum relative to the workpiece and the results of the numerical model simulation. Results and Discussion. A comparison of the results of digital modeling of the geometrical surface of the workpiece and the real surface obtained during the field experiment is given. It is shown that the roughness of the real surface obtained by machining with constant cutting modes varies relative to the surface roughness of the simulation model within the limits of not more than 0.066 µm.

About the authors

V. E. Gvindjiliya

Email: vvgvindjiliya@donstu.ru
ORCID iD: 0000-0003-1066-4604
Ph.D. (Engineering), Don State Technical University, 1 Gagarin square, Rostov-on-Don, 344000, Russian Federation, vvgvindjiliya@donstu.ru

E. V. Fominov

Email: fominoff83@mail.ru
ORCID iD: 0000-0002-0165-7536
Ph.D. (Engineering), Don State Technical University, 1 Gagarin square, Rostov-on-Don, 344000, Russian Federation, fominoff83@mail.ru

D. V. Moiseev

Email: denisey2003@mail.ru
ORCID iD: 0000-0002-7186-7758
Ph.D. (Engineering), Don State Technical University, 1 Gagarin square, Rostov-on-Don, 344000, Russian Federation, denisey2003@mail.ru

E. I. Gamaleeva

Email: belan_kate80@mail.ru
ORCID iD: 0000-0001-5829-4695
Don State Technical University, 1 Gagarin square, Rostov-on-Don, 344000, Russian Federation, belan_kate80@mail.ru

References

  1. Макаров А.Д. Оптимизация процессов резания. – М.: Машиностроение, 1976. – 278 с.
  2. Selbsterregte Schwingungen an Werkzeugmaschinen / J. Tlusty, A. Polacek, C. Danek, J. Spacek. – Berlin: VerlagTechnik, 1962. – 340 p.
  3. Табенкин А.Н. Шероховатость, волнистость, профиль. Международный опыт / А.Н. Табенкин, С.Б. Тарасов, С.Н. Степанов. – СПб.: Изд-во Политехн. ун-та, 2007. – 133 с.
  4. Al-Ahmari A.M.A. Mathematical model for determining machining parameters in multipass turning operations with constraints // International Journal of Production Research. – 2001. – Vol. 39 (15). – P. 3367–3376. – doi: 10.1080/00207540110052562.
  5. Суслов А.Г. Качество поверхностного слоя деталей машин. – М.: Машиностроение, 2000. – 320 с.
  6. Суслов А.Г. Технологическое обеспечение параметров состояния поверхностного слоя деталей. – М.: Машиностроение, 1987. – 320 с.
  7. Демкин Н.Б. Качество поверхности и контакт деталей машин. – М.: Машиностроение, 1981. – 244 с.
  8. Benga G.C., Abrao A.M. Turning of hardened 100Cr6 bearing steel with ceramic and PCBN cutting tools // Journal of Materials Processing Technology. – 2003. – Vol. 143. – P. 237–241. – doi: 10.1016/S0924-0136(03)00346-7.
  9. Choudhury I.A., El-Baradie M.A. Surface roughness prediction in the turning of high-strength steel by factorial design of experiments // Journal of Materials Processing Technology. – 1997. – Vol. 67. – P. 55–61. – doi: 10.1016/S0924-0136(96)02818-X.
  10. Upadhyay V., Jain P.K., Mehta N.K. In-process prediction of surface roughness in turning of Ti–6Al–4V alloy using cutting parameters and vibration signals // Measurement. – 2013. – Vol. 46 (1). – P. 154–160. – doi: 10.1016/j.measurement.2012.06.002.
  11. Hahn R.S. On the theory of regenerative chatter in precision grinding operation // Transactions of American Society of Mechanical Engineers. – 1954. – Vol. 76. – P. 356–260.
  12. Merritt H.E. Theory of self-excited machine-tool chatter: contribution to machine-tool chatter research // Journal of Engineering for Industry. – 1965. – Vol. 87. – P. 447–454. – doi: 10.1115/1.3670861.
  13. Tobias S.A., Fishwick W. Theory of regenerative machine tool chatter // The Engineer. – 1958. – Vol. 205 (7). – P. 199–203.
  14. Litak G. Chaotic vibrations in a regenerative cutting process // Chaos Solitons & Fractals. – 2002. – Vol. 13. – P. 1531–1535. – doi: 10.1016/S0960-0779(01)00176-X.
  15. Zakovorotny V., Gvindjiliya V. Correlation of attracting sets of tool deformations with spatial orientation of tool elasticity and regeneration of cutting forces in turning // Izvestiya VUZ. Applied Nonlinear Dynamics. – 2022. – Vol. 30 (1). – P. 37–56. – doi: 10.18500/0869-6632-2022-30-1-37-56.
  16. Experimental and numerical investigation of burr formation in intermittent turning of AISI 4140 / H. Persson, M. Agmell, V. Bushlya, J. Stahl // Procedia CIRP. – 2017. – Vol. 58. – P. 37–42. – doi: 10.1016/j.procir.2017.03.165.
  17. Patel K.A., Brahmbhatt P.K. A comparative study of the RSM and ANN models for predicting surface roughness in roller burnishing // Procedia Technology. – 2016. – Vol. 23. – P. 391–397. – doi: 10.1016/j.protcy.2016.03.042.
  18. Alam S.T., Tomal A.N.M., Nayeem M.K. High-speed machining of Ti–6Al–4V: RSM-GA based optimization of surface roughness and MRR // Results in Engineering. – 2023. – Vol. 17. – P. 100873. – doi: 10.1016/j.rineng.2022.100873.
  19. Abu-Mahfouz I., Rahman A.H.M.E., Banerjee A. Surface roughness prediction in turning using three artificial intelligence techniques: A comparative study // Procedia Computer Science. – 2018. – Vol. 140. – P. 258–267. – doi: 10.1016/j.procs.2018.10.322.
  20. Laghari R.A., Samir M. Comprehensive approach toward IIoT based condition monitoring of machining processes // Measurement. – 2023. – Vol. 217. – P. 113004. – doi: 10.1016/j.measurement.2023.113004.
  21. Virtual process systems for part machining operations / Y. Altintas, P. Kersting, D. Biermann, E. Budak, B. Denkena, I. Lazoglu // CIRP Annals. – 2014. – Vol. 63 (2). – P. 585–605. – doi: 10.1016/j.cirp.2014.05.007.
  22. Altintas Y., Eynian M., Onozuka H. Identification of dynamic cutting force coefficients and chatter stability with process damping // CIRP Annals. – 2008. – Vol. 57 (1). – P. 371–374. – doi: 10.1016/j.cirp.2008.03.048.
  23. Virtual compensation of deflection errors in ball end milling of flexible blades / Y. Altintas, O. Tuysuz, M. Habibi, Z.L. Li // CIRP Annals. – 2008. – Vol. 57 (1). – P. 371–374. – doi: 10.1016/j.cirp.2008.03.048.
  24. Kabaldin Y.G., Shatagin D.A., Kuzmishina A.M. The development of a digital twin of a cutting tool for mechanical production // Proceedings of Higher Educational Institutions. Machine Building. – 2019. – Vol. 4. – P. 11–17. – doi: 10.18698/0536-1044-2019-4-11-17.
  25. Воронов С.А., Киселев И.А. Нелинейные задачи динамики процессов резания // Машиностроение и инженерное образование. – 2017. – № 2. – С. 9–23.
  26. Заковоротный В.Л., Бордачев Е.В. Прогнозирование и диагностика качества обрабатываемой детали на токарных станках с ЧПУ // Известия высших учебных заведений. Машиностроение. – 1996. – № 1. – С. 95–104.
  27. Zakovorotny V.L., Gvindzhiliya V.E. Influence of spindle wobble in turning on the workpiece’;s surface topology // Russian Engineering Research. – 2018. – Vol. 38. – P. 818–823. – doi: 10.3103/S1068798X18100192.
  28. Bifurcation of stationary manifolds formed in the neighborhood of the equilibrium in a dynamic system of cutting / V.L. Zakovorotny, A.D. Lukyanov, A.A. Gubanova, V.V. Hristoforova // Journal of Sound and Vibration. – 2016. – Vol. 368. – P. 174–190. – doi: 10.1016/j.jsv.2016.01.020.
  29. Санкин Ю.Н., Санкин Н.Ю. Устойчивость токарных станков при нелинейной характеристике процесса резания. – Ульяновск: УлГТУ, 2008. – 137 с.
  30. Заковоротный В.Л., Гвинджилия В.Е. Зависимость изнашивания инструмента и параметров качества формируемой резанием поверхности от динамических характеристик // Обработка металлов (технология, оборудование, инструменты). – 2019. – Т. 21, № 4. – С. 31–46. – doi: 10.17212/1994-6309-2019-21.4-31-46.
  31. Моделирование динамической связи, формируемой процессом точения, в задачах динамики процесса резания (позиционная связь) / В.Л. Заковоротный, Д.Т. Фам, С.Т. Нгуен, М.Н. Рыжкин // Вестник Донского государственного технического университета. – 2011. – Т. 11, № 3 (54). – С. 301–311.
  32. FEM to predict the effect of feed rate on surface roughness with cutting force during face milling of titanium alloy / M.H. Ali, B.A. Khidhir, M.N.M. Ansari, B. Mohamed // Housing and Building National Research Center Journal. – 2013. – Vol. 9 (3). – P. 263–269. – doi: 10.1016/j.hbrcj.2013.05.003.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».