Факторы, влияющие на эффективность самоочищения строительных материалов с фотокаталитически активными компонентами

Обложка

Цитировать

Полный текст

Аннотация

Введение. Рассматривается использование строительных материалов с фотокаталитически активными добавками как перспективное решение экологических и экономических проблем городской среды. В области строительного материаловедения определена необходимость изучения микроструктуры самоочищающихся строительных материалов и влияния примесей на эффективность самоочищения материалов с фотокаталитически активными добавками.Материалы и методы. Использовали красный гипс (отход производства с фотокаталитически активными примесями), цемент, строительный гипс, микрокремнезем, синтезированную фотокаталитически активную добавку оксид титана – оксид кремния, пигменты на основе железа. Изготовлены образцы-таблетки на основе гипсоцементно-пуццоланового вяжущего (ГЦПВ) с различными фотокаталитически активными компонентами: добавкой-фотокатализатором, пигментами, а также примесные фотокаталитически активные оксиды. Методом электронной растровой микроскопии исследована микроструктура образцов, распределение элементов титана и железа. Эффективность самоочищения определяли по изменению контактного угла капли воды на поверхности, покрытой олеиновой кислотой.Результаты. Определена эффективность самоочищения образцов с добавленными и примесными фотокаталитически активными компонентами — оксидами титана и железа. Выявлено влияние добавленных примесей на структуру материала, также влияние вида и концентрации примесей на эффективность самоочищения.Выводы. Добавка-фотокатализатор оксид титана в концентрации 4,4 % обеспечивает высокую эффективность самоочищения, равномерно распределяется в объеме материала, не влияя на структуру формирующегося камня вяжущего. Пигмент (оксид железа (III)) обеспечивает достаточную эффективность самоочищения при концентрации 2–9 %, при концентрациях более 2 % распределяется неравномерно, обеспечивает малый прирост показателей эффективности самоочищения. При совместном введении оксидов титана и железа наблюдается ухудшение самоочищения из-за высокой степени рекомбинации пар электрон – дырка. Красный гипс с примесными оксидами титана и железа показал достаточно высокую эффективность самоочищения, имеет равномерное распределение примесей, которые не оказывают явного влияния на структуру материала.

Об авторах

П. И. Кийко

Южно-Уральский государственный университет (национальный исследовательский университет) (ЮУрГУ (НИУ))

Email: mspolly22@mail.ru

Т. Н. Черных

Южно-Уральский государственный университет (национальный исследовательский университет) (ЮУрГУ (НИУ))

Email: chernykhtn@susu.ru
ORCID iD: 0000-0002-4288-2115

В. П. Плесовских

Южно-Уральский государственный университет (национальный исследовательский университет) (ЮУрГУ (НИУ))

Email: plessovpv@gmail.com

Список литературы

  1. Артемьев Ю.М., Рябчук В.К. Введение в гетерогенный фотокатализ. СПб. : 1999. 303 с.
  2. Li X., Simon U., Bekheet M.F., Gurlo A. Mineral-supported photocatalysts: a review of materials, mechanisms and environmental applications // Energies. 2022. Vol. 15. Issue 15. P. 5607. doi: 10.3390/en15155607
  3. Cundari T.R. Titanium chemistry // Computational Organometallic Chemistry. 2014. 448 p. doi: 10.1201/9781482290073
  4. Paolini R., Borroni D., Pedeferri M., Diamanti M.V. Self-cleaning building materials: The multifaceted effects of titanium dioxide // Construction and Building Materials. 2018. Vol. 182. Pp. 126–133. doi: 10.1016/j.conbuildmat.2018.06.047
  5. Gubareva E.N., Strokova V.V., Ogurtsova Y.N., Baskakov P.S., Singh L.P. Composition and properties of TiO2 sol to produce a photocatalytic composite material // Key Engineering Materials. 2020. Vol. 854. Pp. 45–50. doi: 10.4028/ href='www.scientific.net/kem.854.45' target='_blank'>www.scientific.net/kem.854.45
  6. Kumar S.G., Devi L.G. Review on modified TiO2 photocatalysis under UV/Visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics // Journal of Physical Chemistry A. 2011. Vol. 115. Pp. 13211–13241. doi: 10.1021/jp204364a
  7. Rapsomanikis A., Papoulis D., Panagiotaras D., Kaplani E., Stathatos E. Nanocrystalline TiO2 and halloysite clay mineral composite films prepared by sol-gel method: synergistic effect and the case of silver modification to the photocatalytic degradation of basic blue-41 Azo Dye in water // Global Nest Journal. 2014. Vol. 16. Issue 3. Pp. 485–498. doi: 10.30955/gnj.001323
  8. Smirnova O.V., Grebenyuk A.G., Lobanov V.V. A quantum chemical study on the effect of titanium dioxide modification with non-metals on its spectral characteristics // Himia, Fizika ta Tehnologia Poverhni. 2020. Vol. 11. Issue 4. Pp. 539–546. doi: 10.15407/hftp11.04.539
  9. Diamanti M.V., Luongo N., Massari S., Lupica Spagnolo S., Daniotti B., Pedeferri M.P. Durability of self-cleaning cement-based materials // Construction and Building Materials. 2021. Vol. 280. P. 122442. doi: 10.1016/j.conbuildmat.2021.122442
  10. Hamidi F., Aslani F. TiO2-based photocatalytic cementitious composites: materials, properties, influential parameters, and assessment techniques // Nanomaterials. 2019. Vol. 9. Issue 10. P. 1444. doi: 10.3390/nano9101444
  11. Janus M., Bubacz K., Zatorska J., Kusiak-Nejman E., Czyżewski A., Morawski A.W. Preliminary studies of photocatalytic activity of gypsum plasters containing TiO2 co-modified with nitrogen and carbon // Polish Journal of Chemical Technology. 2015. Vol. 17. Issue 2. Pp. 96–102. doi: 10.1515/pjct-2015-0036
  12. Lapidus A., Korolev E., Topchiy D., Kuzmina T., Shekhovtsova S., Shestakov N. Self-cleaning cement-based building materials // Buildings. 2022. Vol. 12. Issue 5. P. 606. doi: 10.3390/buildings12050606
  13. Mukhametrakhimov R., Galautdinov A., Lukmanova L. Influence of active mineral additives on the basic properties of the gypsum cementpozzolan binder for the manufacture of building products // MATEC Web of Conferences. 2017. Vol. 106. P. 03012. doi: 10.1051/matecconf/201710603012
  14. Zając K., Janus M., Morawski A. Improved self-cleaning properties of photocatalytic gypsum plaster enriched with glass fiber // Materials. 2019. Vol. 12. Issue 3. P. 357. doi: 10.3390/ma12030357
  15. Zhao A., Yang J., Yang E.-H. Self-cleaning engineered cementitious composites // Cement and Concrete Composites. 2015. Vol. 64. Pp. 74–83. doi: 10.1016/j.cemconcomp.2015.09.007
  16. Jimenez-Relinque E., Rodriguez-Garcia J.R., Castillo A., Castellote M. Characteristics and efficiency of photocatalytic cementitious materials: Type of binder, roughness and microstructure // Cement and Concrete Research. 2015. Vol. 71. Pp. 124–131. doi: 10.1016/j.cemconres.2015.02.003
  17. Лабузова М.В., Балицкий Д.А., Огурцова Ю.Н. Определение влияния неорганического пигмента на процесс самоочищения цементных образцов с диоксидом титана // IX Международный Молодежный Форум “Образование. Наука. Производство” : cб. тр. конф. Белгород. 2017. С. 761–764. URL: https://elibrary.ru/item.asp?id=37149150
  18. Huang C., Hsieh W., Pan J., Chang S. Characteristic of an innovative TiO2/Fe0 composite for treatment of Azo Dye // Separation and Purification Technology. 2007. Vol. 58. Issue 1. Pp. 152–158. doi: 10.1016/j.seppur.2007.07.034
  19. Lezner M., Grabowska E., Zaleska A. Preparation and photocatalytic activity of iron-modified titanium dioxide photocatalyst // Physicochemical Problems of Mineral Processing. 2012. Vol. 48. Issue 1. Pp. 193–200.
  20. Pal B., Sharon M., Nogami G. Preparation and characterization of TiO2/Fe2O3 binary mixed oxides and its photocatalytic properties // Materials Chemistry and Phy-sics. 1999. Vol. 59. Issue 3. Pp. 254–261. doi: 10.1016/s0254-0584(99)00071-1
  21. García-Muñoz P., Pliego G., Zazo J.A., Bahamonde A., Casas J.A. Ilmenite (FeTiO3) as low cost catalyst for advanced oxidation processes // Journal of Environmental Chemical Engineering. 2016. Vol. 4. Issue 1. Pp. 542–548. doi: 10.1016/j.jece.2015.11.037
  22. Sariman S., Krisnandi Y.K., Setiawan B. Anatase TiO2 Enrichment from Bangka ilmenite (FeTiO3) and Its photocatalytic test on degradation of Congo red // Proceedings of the Advanced Materials Research. 2013. Vol. 789. Pp. 538–544. doi: 10.4028/ href='www.scientific.net/AMR.789.538' target='_blank'>www.scientific.net/AMR.789.538
  23. Smith Y.R., Joseph A.R.K., (Ravi) Subramanian V., Viswanathan B. Sulfated Fe2O3–TiO2 synthesized from ilmenite ore: A visible light active photocatalyst // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010. Vol. 367. Issue 1-3. Pp. 140–147. doi: 10.1016/j.colsurfa.2010.07.001
  24. Torres-Luna J.A., Sanabria N.R., Carriazo J.G. Powders of iron(III)-doped titanium dioxide obtained by direct way from a natural ilmenite // Powder Technology. 2016. Vol. 302. Pp. 254–260. doi: 10.1016/j.powtec.2016.08.056
  25. Avdin V.V., Bulanova A.V., Asilbekova A.A., Ilkaeva M.V. Destruction of some dyes on composite photocatalysts based on SiO2/TiO2 Oxides // Bulletin of the South Ural State University series “Chemistry” 2020. Vol. 12. Pp. 98–107. doi: 10.14529/chem200305.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).