Factors Affecting the Results of the Experiment in the Perioperative Period

封面

如何引用文章

全文:

详细

As a research task, the authors attempted to assess factors affecting the results of the experiment involving laboratory animals in the perioperative period and the modes of their action. The perioperative period has a significant impact on the state of organ systems, in particular, and on the vital activity of the organism, as a whole. This paper describes the key points having an impact on successful surgical interventions. Particular attention is paid to the main groups of factors that affect the severity of perioperative complications - hypoxia, hypothermia, the use of pharmacological drugs, the human factor, the preparation of the animal for surgery, as well as the choice of anesthesia and the method of its administration. One of the reasons leading to the death of the operated animal is the failure of the sutures in the area of surgical intervention, which is often caused by the action of endogenous microorganisms in the area of the operation. The scientific novelty of the study lies in a systematic approach to the examined material accumulated as a result of numerous studies. Based on the results obtained, a list of groups of factors, their influence on the body, and ways to eliminate their role in the occurrence of perioperative complications was determined.

作者简介

Artem Morozov

Tver State Medical University

Email: ammorozovv@gmail.com
ORCID iD: 0000-0003-4213-5379
SPIN 代码: 6815-9332

Ph.D., Associate Professor, Department of General Surgery

俄罗斯联邦, Tver, Russian Federation

Alexey Sergeev

Tver State Medical University

Email: dr.nikolaevich@mail.ru
ORCID iD: 0000-0002-9657-8063
SPIN 代码: 8817-0158

M.D., Associate Professor, Head of the Department of General Surgery

俄罗斯联邦, Tver, Russian Federation

Elshad Askerov

Tver State Medical University

编辑信件的主要联系方式.
Email: elschad.askerov@yandex.ru
ORCID iD: 0000-0002-2567-6088
SPIN 代码: 5529-8581

Ph.D., Associate Professor, Department of General Surgery

俄罗斯联邦, Tver, Russian Federation

参考

  1. Lazarenko VA, Tkachenko PV, Lipatov VA, Naimzada MD. Scientific Laboratory management: best practices and challenges of the time. Akkreditaciya v obrazovanii. 2019; 4: 26-28. (in Russ.)
  2. Naimzada MDZ, Lipatov VA, Denisov AA. From the operating unit of the department to the modern surgical laboratory: the relevance of the integration of medical education and science. Innova. 2020; 3 (20): 48-51. (in Russ.)
  3. Lazarenko VA, Lipatov VA, Naimzada MDZ. Laboratory of Experimental Surgery and Oncology of the Research Institute of Medical Sciences of the Kursk State Medical University. Eksperiment v hirurgii i onkologii. 2020; 10-12. (in Russ.)
  4. Karpova IY, Peretyagin PV, Orlinskaya NY, Shirokova NY, Pyatova ED, Ptushko SS. Study of morphological transformation and features of vascular blood flow of the wall of the small and large intestine in the simulation of ischemia in the experiment. Journal of Experimental and Clinical Surgery. 2023;16(2):120-129. doi: 10.18499/2070-478X-2023-16-2-120-129 (in Russ.)
  5. Lapin KN, Ryzhkov IA, Mal'ceva VA, Udut EV. Vascular catheterization of small laboratory animals in biomedical research: technological aspects of the method (review). Byulleten' sibirskoj mediciny. 2021; 3: 168-181. (in Russ.)
  6. Rufiange M, Leung VSY, Simpson K, Pang DSJ. Pre-warming before general anesthesia with isoflurane delays the onset of hypothermia in rats. PLoS One. 2020;15(3): e0219722. doi: 10.1371/journal.pone.0219722.
  7. Kiefer D, Müller-Wirtz LM, Maurer F, Hüppe T, Mathes AM, Volk T, Kreuer S, Fink T. Intravenous propofol, ketamine (ketofol) and rocuronium after sevoflurane induction provides long lasting anesthesia in ventilated rats. Experimental Animals. 2022;71(2):231-239. doi: 10.1538/expanim.21-0147.
  8. Kornyushin OV, Toropova YAG, Nejmark AE, Berko OM, Glistenkova DD, Karelli LG, Polozov AS, Galagudza MM. Surgical correction of metabolic syndrome in an experiment on rats: methodological aspects. Byulleten' sibirskoj mediciny. 2018; 1: 59-74. (in Russ.)
  9. Truhan AP, Tereshko DG, Letkovskaya TA. Comparative evaluation of the effectiveness of intraperitoneal and intramuscular methods of administration of methylethylpyridinol hydrochloride (emoxypine) in traumatic limb muscle lesions. Novosti hirurgii. 2020;28(5):491- 497. (in Russ.)
  10. Hsu AKW, Roman SS, Bagatini MD, Marafon F, do Nascimento Junior P, Modolo NSP. Intermittent Fasting before Laparotomy: Effects on Glucose Control and Histopathologic Findings in Diabetic Rats. Nutrients. 2021;13(12):4519. doi: 10.3390/nu13124519.
  11. Sokolov AS, Korshunov AV, Rustamova VS, CHernov AL. Sodium lactate is the choice for infusion solutions with reserve alkalinity. Medicina neotlozhnyh sostoyanij. 2017;2(81):63-69. (in Russ.)
  12. Vitik AA, SHen' NP. Organoprotective properties of the alpha-adrenergic receptor agonist dexmedetomidine (literature review). Vestnik intensivnoj terapii imeni A. I. Saltanova. 2018; 4:74-79. (in Russ.)
  13. Mosolova AV, Klimova LG, Sukovatyh BS, Zatolokina MA, Semykin DA, Zatolokina ES. Assessment of the biocidal activity of a new suture material impregnated with miramistin. Vestnik VolGMU. 2021; 1(77). (in Russ.)
  14. Wei G, Wu Y, Gao Q, Shen C, Chen Z, Wang K, Yu J, Li X, Sun X. Gallic Acid attenuates postoperative intra-abdominal adhesion by inhibiting inflammatory reaction in a rat model. Medical Science Monitor. 2018; 24: 827-838. doi: 10.12659/MSM.908550
  15. Sukovatyh BS, ZHukovskij VA, Lipatov VA, Blinkov YUYU. Modern technologies for the prevention of postoperative adhesions. Vestnik hirurgii imeni II Grekova. 2014; 173(5): 98-104. (in Russ.)
  16. Morozov DD, Morozova OL, Severgina LO, Marchuk TD, Tarasova DS, Morozov DA. Perioperative ischemia of the neorectum. The experimental model. Voprosy prakticheskoj pediatrii. 2020;15(4): 47-53. doi: 10.20953/1817-7646-20204-47-53. (in Russ.)
  17. Popov KA, Cymbalyuk IYU, Sepiashvili RI, Bykov IM, Ustinova ES, Bykov MI. Choosing the optimal marker of acute liver damage in rats in an experiment. Vestnik RUDN. Seriya: Medicina. 2020;24(4):293-303. (in Russ.)
  18. Ostrova IV, Avrushchenko MSH, Golubev AM, Golubeva NV. Роль мозгового нейротрофического фактора BDNF и его рецептора TrkB в устойчивости нейронов гиппокампа к ишемии-реперфузии (экспериментальное исследование). Obshchaya reanimatologiya. 2018;14(6):41-50. (in Russ.)
  19. Tasbihgou SR, Netkova M, Kalmar AF, Doorduin J, Struys MMRF, Schoemaker RG, Absalom AR. Brain changes due to hypoxia during light anaesthesia can be prevented by deepening anaesthesia; a study in rats. PLoS One. 2018;13(2):e0193062. doi: 10.1371/journal.pone.0193062.
  20. Sugano A, Murai H, Horiguchi S, Yoshimoto Y, Amano Y, Kimura T, Iba Y. Influence of light-dark cycle on delayed recovery from isoflurane anesthesia induced by hypnotics in mice. Journal of Pharmaceutical Sciences. 2021;145(4):335-339. doi: 10.1016/j.jphs.2021.02.003.
  21. Liu Y, Chu JMT, Ran Y, Zhang Y, Chang RCC, Wong GTC. Prehabilitative resistance exercise reduces neuroinflammation and improves mitochondrial health in aged mice with perioperative neurocognitive disorders. Journal of Neuroinflammation. 2022;19(1):150. doi: 10.1186/s12974-022-02483-1.
  22. Han J, Pu CX, Xiao QX, Tang LJ, Liu T, He L, Ren YB, Liu Q, Zhang Y. miRNA-124-3p targeting of LPIN1 attenuates inflammation and apoptosis in aged male rats cardiopulmonary bypass model of perioperative neurocognitive disorders. Experimental Gerontology. 2021; 155:111578. doi: 10.1016/j.exger.2021.111578.
  23. Lin N, Jin JW, Lai ZM, Zhang DF, Chen Y, Guo HG, Liu JL. Mdivi-1 improves postoperative neurocognitive disorders in aged rats undergoing splenectomy by inhibiting dynamin-related protein-1. Annals of Translational Medicine. 2022;10(24):1338. doi: 10.21037/atm-22-5496.
  24. Li Y, Yuan Y, Li Y, Han D, Liu T, Yang N, Mi X, Hong J, Liu K, Song Y, He J, Zhou Y, Han Y, Shi C, Yu S, Zou P, Guo X, Li Z. Inhibition of α-synuclein accumulation improves neuronal apoptosis and delayed postoperative cognitive recovery in aged mice. Oxidative Medicine and Cellular Longevity. 2021; 2021:5572899. doi: 10.1155/2021/5572899.
  25. SHaripova VH, Valihanov AA, Alimov AH, Abdullaev ZHG. The effect of high-trauma surgeries on cognitive functions in rats. Vestnik sovremennoj klinicheskoj mediciny. 2020;13(3):86-92. (in Russ.)
  26. Liu Y, Chu JMT, Ran Y, Zhang Y, Chang RCC, Wong GTC. Prehabilitative resistance exercise reduces neuroinflammation and improves mitochondrial health in aged mice with perioperative neurocognitive disorders. Journal of Neuroinflammation. 2022;19(1):150. doi: 10.1186/s12974-022-02483-1.
  27. Nishimura M, Nomura Y, Egi M, Obata N, Tsunoda M, Mizobuchi S. Suppression of behavioral activity and hippocampal noradrenaline caused by surgical stress in type 2 diabetes model mice. BMC Neurosci. 2020;21(1):8. doi: 10.1186/s12868-020-0556-y.
  28. Shimaoka H, Shiina T, Suzuki H, Horii Y, Horii K, Shimizu Y. Successful induction of deep hypothermia by isoflurane anesthesia and cooling in a non-hibernator, the rat. Journal of physiological sciences. 2021;71(1):10. doi: 10.1186/s12576-021-00794-1
  29. Rufiange M, Leung VS, Simpson K, Pang DS. Prewarming followed by active warming is superior to passive warming in preventing hypothermia for short procedures in adult rats (rattus norvegicus) under isoflurane anesthesia. Journal of the American Association for Laboratory Animal Science. 2020; 59(4):377–83. doi: 10.30802/AALAS-JAALAS-19-000114
  30. Klune CB, Robbins HN, Leung VS, Pang DS. Hypothermia during general anesthesia interferes with pain assessment in laboratory rats (rattus norvegicus). Journal of the American Association for Laboratory Animal Science. 2020; 59(6):719-725. doi: 10.30802/AALAS-JAALAS-20-000018
  31. Kong E, Wang H, Wang X, Zhang Y, Zhang J, Yu W, Feng X, Sun Y, Wu F. Bilirubin induces pain desensitization in cholestasis by activating 5-hydroxytryptamine 3a receptor in spinal cord. Frontiers in Cell and Developmental Biology. 2021; 9: 605855. doi: 10.3389/fcell.2021.605855
  32. Yu Q, Li J, Dai CL, Li H, Iqbal K, Liu F, Gong CX. Anesthesia with sevoflurane or isoflurane induces severe hypoglycemia in neonatal mice. PLoS One. 2020;15(4):e0231090. doi: 10.1371/journal.pone.0231090.
  33. Lipatov VA, Severinov DA, Kryukov AA, Saakyan AR. Ethical and legal aspects of conducting experimental biomedical research in vivo. Part II. Rossijskij mediko-biologicheskij vestnik imeni akademika IP Pavlova. 2019; 27(2): 245-257. (in Russ.)
  34. Zude BP, Jampachaisri K, Pacharinsak C. Use of Flavored Tablets of Gabapentin and Carprofen to Attenuate Postoperative Hypersensitivity in an Incisional Pain Model in Rats (Rattus norvegicus). Journal of the American Association for Laboratory Animal Science. 2020; 59(2): 163-169. doi: 10.30802/AALAS-JAALAS-19-000093
  35. Zhou W, Cheung K, Kyu S, Wang L, Guan Z, Kurien PA, Bickler PE, Jan LY. Activation of orexin system facilitates anesthesia emergence and pain control. Proceedings of the National Academy of Sciences. 2018; 115(45): E10740-E10747. doi: 10.1073/pnas.1808622115.
  36. Boavista Barros Heil L, Leme Silva P, Ferreira Cruz F, Pelosi P, Rieken Macedo Rocco P. Immunomodulatory effects of anesthetic agents in perioperative medicine. Minerva Anestesiol. 2020; 86(2):181-195. doi: 10.23736/S0375-9393.19.13627-9
  37. Yang B, Qian F, Li W, Li Y, Han Y. Effects of general anesthesia with or without epidural block on tumor metastasis and mechanisms. Oncology Letters. 2018;15(4):4662-4668. doi: 10.3892/ol.2018.7870
  38. Grebenchikov OA, Skripkin YUV, Gerasimenko ON, Kadanceva KK, Bachinskij AL, Berikashvili LB, Lihvancev VV. Non-anesthetic effects of modern halogen-containing anesthetics. Patologiya krovoobrashcheniya i kardiohirurgiya. 2020;24.(2):26-45. (in Russ.)
  39. Seo EH, Piao L, Park HJ, Lee JY, Sa M, Oh CS, Lee SH, Kim SH. Impact of general anaesthesia on endoplasmic reticulum stress: propofol vs. isoflurane. International Journal of Medical Sciences. 2019; 16(9):1287-1294. doi: 10.7150/ijms.36265
  40. Wang J, Yang B, Ju L, Yang J, Allen A, Zhang J, Martynyuk AE. The Estradiol Synthesis Inhibitor Formestane Diminishes the Ability of Sevoflurane to Induce Neurodevelopmental Abnormalities in Male Rats. Frontiers in Systems Neuroscience. 2020; 14: 546531. doi: 10.3389/fnsys.2020.546531
  41. Tanatarov SZ. Experimental safety analysis of long-term use of isoflurane in a closed circuit. Nauka i zdravoohranenie. 2019; 2. (in Russ.)
  42. Sajovic J, Trandafilović M, Drevenšek G, Kužner J, Drevenšek M. Frequently applied ketamine, medetomidine and thiopental anaesthesia induces high mortality in Wistar rats. European Review for Medical and Pharmacological Sciences. 2022; 26(1):158-167.
  43. Jiron JM, Mendieta Calle JL, Castillo EJ, Abraham AM, Messer JG, Malphurs WL, Malinowski C, Grove K, Reznikov LR, Zubcevic J, Aguirre JI. Comparison of Isoflurane, Ketamine-Dexmedetomidine, and Ketamine-Xylazine for General Anesthesia during Oral Procedures in Rice Rats (Oryzomys palustris). Journal of the American Association for Laboratory Animal Science. 2019;58(1):40-49. doi: 10.30802/AALAS-JAALAS-18-000032
  44. Limprasutr V, Sharp P, Jampachaisri K, Pacharinsak C, Durongphongtorn S. Tiletamine/zolazepam and dexmedetomidine with tramadol provide effective general anesthesia in rats. Animal Models and Experimental Medicine. 2021;4(1):40-46.
  45. Cicero L, Fazzotta S, Palumbo VD, Cassata G, Lo Monte AI. Anesthesia protocols in laboratory animals used for scientific purposes. Acta biomedica scientifica. 2018;89(3):337-342. doi: 10.23750/abm.v89i3.5824
  46. Mohov EN, Kadykov VA, Morozov AM. About the possibility of using laboratory animals in experimental surgery. Hirurgicheskaya praktika. 2018; 2(34): 33-38. (in Russ.)
  47. Kim JY, Lee JI, Jeong JH, Fang Y, Ju MK, Kim SJ, Huh KH, Kim MS, Kim YS. Improved yield and functional parameters of rat pancreas islets isolated under intramuscular anesthesia. Cell Transplant. 2010;19(6):743-50. doi: 10.3727/096368910X508843.
  48. Khokhlova ON, Borozdina NA, Sadovnikova ES, Pakhomova IA, Rudenko PA, Korolkova YV, Kozlov SA, Dyachenko IA. Comparative study of the aftereffect of CO2 inhalation or tiletamine-zolazepam-xylazine anesthesia on laboratory outbred rats and mice. Biomedicines. 2022;10(2):512. doi: 10.3390/biomedicines10020512.
  49. Kosenko PO, Smolikov AB, Voynov VB, Shaposhnikov PD, Saevskiy AI, Kiroy VN. Effect of xylazine-tiletamine-zolazepam on the local field potential of the rat olfactory bulb. Comp Med. 2020;70(6):492-498. doi: 10.30802/AALAS-CM-20-990015.
  50. He S, Atkinson C, Qiao F, Chen X, Tomlinson S. Ketamine-xylazine-acepromazine compared with isoflurane for anesthesia during liver transplantation in rodents. J Am Assoc Lab Anim Sci. 2010 Jan;49(1):45-51. PMID: 20122316; PMCID: PMC2824967.
  51. Misak A, Grman M, Tomasova L. Use of a rat model to characterize 35 arterial pulse wave parameters in a comparative study of isoflurane and zoletil/xylazine anesthesia and the effect of acanthopanax senticosus extract.Animal Model Exp Med. 2023;6(5):474-488. doi: 10.1002/ame2.12354
  52. Dubenskii AYu, Ryzhkov IA, Lapin KN, Tsokolaeva ZI. The effect of the type of anesthesia on blood circulation in rats. Vestnik SurGU. Meditsina. 2023; 2: 79-86. doi: 10.35266/2304-9448-2023-2-79-86. (in Russ.)
  53. Paasonen J, Stenroos P, Salo RA, Kiviniemi V, Gröhn O. Functional connectivity under six anesthesia protocols and the awake condition in rat brain. Neuroimage. 2018;172:9-20. doi: 10.1016/j.neuroimage.2018.01.014
  54. Chen Y, Bao W, Liang X, Zhang J. Propofol Anesthesia Alters Spatial and Topologic Organization of Rat Brain Metabolism. Anesthesiology. 2019; 131(4):850-865. doi: 10.1097/ALN.0000000000002876
  55. Heng K, Marx JO, Jampachairsi K, Huss MK, Pacharinsak C. Continuous Rate Infusion of Alfaxalone during Ketamine-Xylazine Anesthesia in Rats. Journal of the American Association for Laboratory Animal Science. 2020; 59(2):170-175.

补充文件

附件文件
动作
1. JATS XML


Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».