Diagnostic Options for Postoperative Complications in Surgery
- 作者: Solomakh A.A.1, Gorbachenko V.I.2
-
隶属关系:
- Penza State University,
- Penza State University
- 期: 卷 15, 编号 4 (2022)
- 页面: 314-322
- 栏目: Original articles
- URL: https://journal-vniispk.ru/2070-478X/article/view/233327
- DOI: https://doi.org/10.18499/2070-478X-2022-15-4-314-322
- ID: 233327
如何引用文章
全文:
详细
Currently, scientific research is usually carried out in accordance with the postulates of evidence-based medicine in Russia and foreign countries. However, the implementation of these principles requires deep knowledge of surgery and mathematical modeling. Authors: a surgeon and a programmer developed mathematical models involved in the diagnosis of postoperative complications in surgery. In this paper, we investigated a deep, fully connected neural network for the diagnosis of postoperative complications on the clinical example of acute appendicitis. As a training set of parameters, we used a set developed by the authors on the basis of real clinical data, which has a state registration number in the form of a database, and includes a knowledge base. The interquantile range of the F1 measure is proposed for the selection of significant features. An approach to coding composite categorical features, characterized by a compact representation, is proposed. For pre-processing of training data, it is proposed to use a step-up autoencoder. The autoencoder converts the selected functions into a higher-dimensional space, which, according to Kover's theorem, facilitates the classification of features. The neural network is implemented using the Keras and TensorFlow libraries. To train the neural network, the Adam algorithm with adaptive learning speed is used. To reduce the effect of overfitting, a modern regularization method — dropout-was used. The analysis and selection of the classifier quality metrics are carried out. To evaluate the characteristics of the neural network, k-block cross-validation was used. The trained neural network showed high diagnostic performance on the test data set.
作者简介
Anatoly Solomakh
Penza State University,
Email: anatoly.solomakha@yandex.ru
ORCID iD: 0000-0002-1070-6029
Doctor of Technical Sciences, Professor, Head of the Department of Computer Technology
俄罗斯联邦, Penza, Russian FederationVladimir Gorbachenko
Penza State University
编辑信件的主要联系方式.
Email: anatoly.solomakha@yandex.ru
ORCID iD: 0000-0002-1012-8855
SPIN 代码: 1045-0906
Ph.D., surgeon, transfusiologist, doctor of the highest category, associate professor, full member of the Russian Academy of Medical and Technical Sciences
俄罗斯联邦, Penza, Russian Federation参考
- Совцов С. А. Острый аппендицит: что изменилось в начале нового века?(с комментарием).Хирургия. Журнал им. Н. П. Пирогова.2013;7:37–42.
- Simillis C, Symeonides P, Shorthouse AJ, Tekkis PP. A meta-analysis comparing conservative treatment versus acute appendectomy for complicated appendicitis (abscess or phlegmon).Surgery.2010;147:818–829.doi.org/10.1016/s0090-3671(10)79895-5
- Prabhudesai SG. Artificial neural Networks: Useful Aid in Diagnosing Acute Appendicitis.World Journal of Surgery.2008; 2:305–309.doi.org/10.1007/s00268-007-9299-5
- Park SY, Kim SM. Acute appendicitis diagnosis using artificial neural networks.Technology and health care.2015;23:559–565.doi.org/10.3233/thc-150994
- Juliano Y, Rosa OM, Novo NF, Favaro ML. Risk factors associated with complications of acute appendicitis.Journal of Brazilian College of Surgeons.2017;6:560–566.doi.org/10.26226/morressier.58fa1765d462b80290b50f65
- Bakti N, Hussain A, El-Hassani S. A rare complication of acute appendicitis: Superior mesenteric vein thrombosis.International Journal of Surgery Case Reports. 2011; 8: 250–252.doi.org/10.1016/j.ijscr.2011.08.003
- Brigham KL, Johns MME. Predictive Health: How We Can Reinvent Medicine to Extend Our Best Years.Basic Books.2012; 256.
- Miner L, Bolding P, Hilbe J. Practical Predictive Analytics and Decisioning Systems for Medicine: Informatics Accuracy and Cost-Effectiveness for Healthcare Administration and Delivery Including Medical Research. Academic Press.2014;1110.
- Joskowicz L. Computer-aided surgery meets predictive, preventive, and personalized medicine. EPMA Journal.2017;8:1–4. doi.org/10.1007/s13167-017-0084-8
- Хайкин С. Нейронные сети: полный курс. М.: Вильямс.2006;1104.
- Гудфеллоу Я., Бенджио И., Курвиль А. Глубокое обучение.М.: ДМК Пресс, 2018.652с.
- Аггарвал Ч. Нейронные сети и глубокое обучение.СПб.: ООО "Диалектика".2020;752.
- П. А. Ващенко, А. А. Соломаха, В. И. Горбаченко, А. О. Хазратов. Клинико-лабораторные параметры больных острым аппендицитом. Свидетельство о государственной регистрации базы данных № 2014621431. Дата государственной регистрации в Реестре баз данных 10 октября 2014 г.
- Zheng A, Casari A. Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists. O'Reilly Media. 2018; 218.
- Chandrashekar G, Sahin F. A survey on feature selection methods.Computers & Electrical Engineering.2014;40: 1: 16–28.doi.org/10.1016/j.compeleceng.2013.11.024
- Брюс П., Брюс Э. Практическая статистика для специалистов DataScience. СПб.: БХВ Петербург. 2018;304.
- Жерон О. Прикладное машинное обучение с помощью Scikit‑Learn, Keras и TensorFlow: концепции, инструменты и техники для создания интеллектуальных систем. СПб.: ООО "Диалектика".2020;1040.
- Brownlee J. Why One-Hot Encode Data in Machine Learning? https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/
- Хейдт М., Груздев А. В. Изучаем pandas.М.: ДМК Пресс.2019;682.
- Scikit-Learn // https://scikit-learn.org/stable/
- Шолле Ф. Глубокое обучение на Python. СПб.: Питер.2018; 400.
- Keras: The Python Deep Learning library. Usage of callbacks. https://keras.io/callbacks/
- Cover TM. Geometrical and Statistical Properties of Systems of Linear inequalities with Applications in Pattern Recognition.IEEE Transactions on Electronic Computers. 1965; EC14: 3: 326–334.doi.org/10.1109/pgec.1965.264137
- Zeiler MD. ADADELTA: An Adaptive Learning Rate Method. 2012; https://arxiv.org/abs/1212.5701
- Рашка С., Мирджалили В. Python и машинное обучение: машинное и глубокое обучение с использованием Python, scikit-learn и TensorFlow 2. СПБ.: ООО "Диалектика".2020;848.
补充文件
