Влияние признаков иерархического дискурса на разрешение кореференции в русском языке
- Авторы: Чистова Е.В.1
-
Учреждения:
- Федеральный исследовательский центр «Информатика и управление» Российской академии наук
- Выпуск: № 1 (2025)
- Страницы: 95-102
- Раздел: Анализ текстовой и графической информации
- URL: https://journal-vniispk.ru/2071-8594/article/view/293503
- ID: 293503
Цитировать
Полный текст
Аннотация
В работе изучается вклад признаков иерархического дискурса в решение задачи разрешения кореференции в текстах на русском языке. Приведены оценки качества разработанных риторических анализаторов при решении задачи разрешения кореференции в текстах различных жанров и объёмов на русском языке. Показано, какие особенности корпусов разметки риторических структур для обучения анализаторов влияют на качество разрешения кореференции в различных языковых контекстах.
Ключевые слова
Об авторах
Елена Викторовна Чистова
Федеральный исследовательский центр «Информатика и управление» Российской академии наук
Автор, ответственный за переписку.
Email: chistova@isa.ru
младший научный сотрудник
Россия, МоскваСписок литературы
- Voll K., Taboada M. Not all words are created equal: Extracting semantic orientation as a function of adjective relevance // Australasian Joint Conference on Artificial Intelligence. Springer. 2007. P. 337–346.
- Hogenboom A. et al. Using rhetorical structure in sentiment analysis // Communications of the ACM. 2015. V. 58. No P. 69–77.
- Zirn C. et al. Fine-grained sentiment analysis with structural features // Proceedings of 5th International Joint Conference on Natural Language Processing. 2011. P. 336–344.
- Ji Y., Smith N. A. Neural Discourse Structure for Text Categorization // Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2017. P. 996–1005.
- Lee, K. et al. A discourse-aware neural network-based text model for document-level text classification // Journal of Information Science. 2018. V. 44. No 6. P. 715–735.
- Chistova E., Smirnov I. Discourse-aware text classification for argument mining // Computational Linguistics and Intellectual Technologies. Papers from the Annual International Conference “Dialogue”. 2022. No 2022. P. 93–105.
- Dong Y., Mircea A., Cheung J. C. K. Discourse-Aware Unsupervised Summarization for Long Scientific Documents // Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. 2021. P. 1089–1102.
- Pu D., Demberg V. RST-LoRA: A Discourse-Aware LowRank Adaptation for Long Document Abstractive Summarization // Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). Mexico City, Mexico. 2024. P. 2200–2220.
- Peldszus A., Stede M. Rhetorical structure and argumentation structure in monologue text // Proceedings of the Third Workshop on Argument Mining (ArgMining2016). 2016. P. 103–112.
- Chistova E. End-to-End Argument Mining over Varying Rhetorical Structures // Findings of the Association for Computational Linguistics: ACL 2023. 2023. P. 3376–3391.
- Galitsky B., Ilvovsky D., Pisarevskaya D. Argumentation in Text: Discourse Structure Matters // Computational Linguistics and Intelligent Text Processing. 2023. P. 74–86.
- Kibrik A. A. Cognitive inferences from discourse observations: reference and working memory // Discourse studies in cognitive linguistics. Proceedings of the 5th International cognitive linguistics conference. 1999. P. 29–52.
- Kibrik A. A., Krasavina O. N. A corpus study of referential choice: The role of rhetorical structure // Computational Linguistics and Intellectual Technologies. Papers from the Annual International Conference “Dialogue” (2005). 2005. P. 561–569.
- Kibrik A. A. et al. Referential choice as a multi-factor probabilistic process // Papers from the Annual International Conference “Dialogue”. 2010. P. 173-180.
- Kibrik A. A. et al. Referential choice: Predictability and its limits // Frontiers in psychology. 2016. 7. P. 1429.
- Khosla S., Fiacco J., Rosé C. Evaluating the Impact of a Hierarchical Discourse Representation on Entity Coreference Resolution Performance // Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. — Online. 2021. P. 1645–1651.
- Chistova E., Smirnov I. Light Coreference Resolution for Russian with Hierarchical Discourse Features // Computational Linguistics and Intellectual Technologies. Papers from the Annual International Conference “Dialogue”. 2023. No 22. P. 34–41.
- Lee K., He L., Zettlemoyer L. Higher-Order Coreference Resolution with Coarse-to-Fine Inference // Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers). New Orleans, Louisiana. 2018. P. 687–692.
- Xu L., Choi J. D. Revealing the Myth of Higher-Order Inference in Coreference Resolution // Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Online. 2020. P. 8527–8533.
- Ri R., Yamada I., Tsuruoka Y. mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models // Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Dublin, Ireland. 2022. P. 7316–7330.
- Carlson L., D. Marcu, M. E. Okurowski. Building a Discourse-Tagged Corpus in the Framework of Rhetorical Structure Theory // Current and New Directions in Discourse and Dialogue. 2003. P. 85-112.
- Liu Z., Shi K., Chen N. DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing // Proceedings of the 2nd Workshop on Computational Approaches to Discourse. Punta Cana, Dominican Republic and Online. 2021. P. 154–164.
- Chistova E. Bilingual Rhetorical Structure Parsing with Large Parallel Annotations // Findings of the Association for Computational Linguistics ACL 2024. Bangkok, Thailand and virtual meeting. 2024. P. 9689–9706.
- Чистова Е. В. Методы анализа риторических структур в текстах на русском языке // Искусственный интеллект и принятие решений. 2024. № 4. С. 79–92
- Budnikov A. E. et al. Ru-Eval-2019: Evaluating Anaphora and Coreference Resolution for Russian // Computational Linguistics and Intellectual Technologies-Supplementary Volume. 2019.
- Dobrovolskii V., M. Michurina, A. Ivoylova. RuCoCo: a new Russian corpus with coreference annotation // Computational Linguistics and Intellectual Technologies. Papers from the Annual International Conference “Dialogue”. 2022.
- Vilain M. et al. A Model-Theoretic Coreference Scoring Scheme // Sixth Message Understanding Conference (MUC-6): Proceedings of a Conference Held in Columbia, Maryland. 1995
- Bagga A., Baldwin B. Algorithms for scoring coreference chains // The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference. 1998. V. 1. P. 563–566.
- Luo X. On Coreference Resolution Performance Metrics // Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing. Vancouver, British Columbia, Canada. 2005. P. 25–32.
- Pradhan S. et al. CoNLL-2011 Shared Task: Modeling Unrestricted Coreference in OntoNotes // Proceedings of the Fifteenth Conference on Computational Natural Language Learning: Shared Task. Portland, Oregon, USA. 2011. P. 1–27.
- Moosavi N. S., Strube M. Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric // Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany. 2016. P. 632–642.
- Гутник, Г. К. Опыт адаптации интегральных моделей разрешения кореферентности для русского языка. Студенческая сессия конференции “Диалог”. 2022.
Дополнительные файлы
