The possibility to use artificial intelligence methods in predicting the outcomes of neurosurgical operations
- 作者: Zabezhailo M.I.1, Gavrjushin A.V.2
-
隶属关系:
- Federal research center “Computer science and control” of Russian Academy of Sciences
- N.N. Burdenko Neurosurgery Centre of the Ministry of Health of the Russian Federation
- 期: 编号 2 (2024)
- 页面: 37-52
- 栏目: AI-enabled Systems
- URL: https://journal-vniispk.ru/2071-8594/article/view/265368
- DOI: https://doi.org/10.14357/20718594240203
- EDN: https://elibrary.ru/JXIDPS
- ID: 265368
如何引用文章
全文:
详细
Some abilities of artificial intelligence methods application in predicting the outcomes of neurosurgical operations are discussed. The presented approach is based on the analysis of causal similarity as a basis for generation cause-and-effect dependencies initially hidden in accumulated empirical data. The mathematical formalization of this heuristic is constructed by clarifying similarity as a binary algebraic operation used to compare descriptions of precedents and search in them for approximate representation of the causality of target effects – the outcomes of neurosurgical operations. The possibilities of the presented approach are illustrated by the results of an intelligent analysis of real empirical data covering a series of neurosurgical operations of stem tumors performed in 2005-2018 at the N.N. Burdenko National Medical Research Center for Neurosurgery.
作者简介
Michael Zabezhailo
Federal research center “Computer science and control” of Russian Academy of Sciences
编辑信件的主要联系方式.
Email: m.zabezhailo@yandex.ru
Doctor of physical and mathematical sciences, Head of Department
俄罗斯联邦, MoscowAndrey Gavrjushin
N.N. Burdenko Neurosurgery Centre of the Ministry of Health of the Russian Federation
Email: avg.avg03@gmail.com
Candidate of medical sciences. Neurosurgeon, Researcher of the glial tumours department
俄罗斯联邦, Moscow参考
- Pearl J. Causality: models, reasoning, and inference. N.-Y.: Cambridge University Press, 2000. P. 384.
- Höfler M. Causal inference based on counterfactuals. BMC Med Res Methodol, 2005. V. 5. No 28. https://bmcme- dresmethodol.biomedcentral.com/articles/10.1186/1471- 2288-5-28.
- Evidence-Based Medicine Working Group. Evidence-based medicine. A new approach to teaching the practice of medicine // JAMA. 1992. V. 268. No 17. P. 2420–2425.
- Howick J.H. The Philosophy of Evidence-based Medicine. Chichester (UK): J.Wiley & Sons, 2011. P. 244.
- Talantov P. 0,05 Dokazatelnaya medicina ot magyi do poiskov bessmaetiya [0,05 evidence-based medicine from magic to the quest for immortality]. М: Corpus, 2019. P. 629.
- Pearson K. On Lines and Planes of Closest Fit to Systems of Points in Space // Philosophical Magazine. 1901. No 2 (11). P. 559–572.
- Shapley L.S. A value for n-person games. Santa Monica (CA): RAND Corporation. 1952. P. 15.
- Finn V.K. J.S. Mill’s inductive methods in artificial intelli gence systems // Scientific and Technical Information Pro cessing. Part I. 2011. V. 38. No 6. P. 385–402. Part II. 2012. V. 39. No 5. P. 241–260.
- Finn V.K. Intellekt, informatsionnoe obshchestvo, gumani tarnoe znanie i obrazovanie [Intelligence, Inform. Society, and Humanities Knowledge and Education]. Moscow: LENAND, 2021.
- Cohn P.M. Universal algebra. Springer (NL), 1981. P. 414.
- Pigeonhole principle. Herstein I. N. Topics In Algebra. Waltham: Blaisdell Publishing Company, 1964. P. 342.
- Peirce C.S. The Essential Peirce, Selected Philosophical Writings (Nathan Houser and Christian J. W. Kloesel, eds.). Indiana University Press, Bloomington and Indianapolis, IN. 1992.
- Zabezhailo M.I., Trunin Yu.Yu. On the Reliability of Medical Diagnosis Based on Empirical Data // Scientific and Technical Information Processing. 2021. V. 48. No 5. P. 1–8.
- Zabezhailo M.I. 2022. Ustoychivost empiricheskikh zavisi mostey i problema ob’yasneniya resultatov intellektualnogo analyza dannikh [Stability of empirical dependences and problem of explaining the results of intelligent analysis of data] // Integrirovannye modeli i myagkie vychisleniya v is-kusstvennom intellekte. Sbornik nauchnykh trudov XI Mezhdunarodnoi nauchno-prakticheskoi konferentsii [Inte grated Models and Soft Computing in Artificial Intelligence: Proceedings of 11th Int. Sci.-Pract. Conf.]. Moscow: RAII, 2022. No 2. P. 50–59.
- Zabezhailo M.I. On the Problem of AI-Tools Application in Digital Control Systems// Automatic Documentation and Mathematical Linguistics. 2022. V. 56. No 5. P. 229–236.
- Tarski A. The Semantic Conception of Truth and the Foun dations of Semantics // Philosophy and Phenomenological Research. 1944. V. 4. No 3. P. 341–375. https://sites.ual berta.ca/~francisp/Phil426/TarskiTruth1944.pdf
补充文件
