Non-covalent interaction of boron and nitrogen atoms
- Авторлар: Sokurov A.A.1, Rekhviashvili S.S.1
-
Мекемелер:
- Institute of Applied Mathematics and Automation – branch of Federal Scientific Center “Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences”
- Шығарылым: № 1 (2025)
- Беттер: 70-80
- Бөлім: PHYSICS
- URL: https://journal-vniispk.ru/2072-3040/article/view/297180
- DOI: https://doi.org/10.21685/2072-3040-2025-1-6
- ID: 297180
Дәйексөз келтіру
Толық мәтін
Аннотация
Background. The calculation of the interaction between boron and nitrogen atoms is interesting from the point of view of predicting physical properties and creating new dielectric materials and carbon-free nanomaterials. The purpose of the work is to calculate non-covalent (dispersion) interaction for pairs of atoms B-B, N-N and B-N based on the first principles of quantum mechanics. The calculation is carried out in practice for the first time. Materials and methods. The article uses the density functional theory (DFT) in the electron gas approximation. The Coulomb, kinetic, exchange, and correlation contributions to the interaction energy are taken into account. The electron density is given taking into account the shell structure of atoms in the Roothaan-Hartree-Fock approximation. An original numerical algorithm based on the use of quadrature formulas and CUDA computing parallelization technology is used to calculate improper integrals. Results. Radial electron density functions and corresponding potential curves are constructed over a wide range of interatomic distances. The parameters of potential wells and the constants of the dispersion interaction are calculated. The correctness of the Lorentz-Berthelot rules of thumb for combining potential parameters has been verified. Conclusions. The obtained values of the dispersion interaction constants for homoatomic pairs are consistent with the results known from the literature. Using first-principles calculations, it is possible to determine the parameters of model pair potentials, in particular the Sutherland potential. It is shown that the Lorentz- Berthelot rules do not work for the non-covalent interaction of boron and nitrogen atoms.
Авторлар туралы
Aslan Sokurov
Institute of Applied Mathematics and Automation – branch of Federal Scientific Center “Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences”
Email: isokuroff@mail.ru
Candidate of physical and mathematical sciences, head of the laboratory of measurement automation
(89A Shortanova street, Nalchik, Russia)Sergo Rekhviashvili
Institute of Applied Mathematics and Automation – branch of Federal Scientific Center “Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences”
Хат алмасуға жауапты Автор.
Email: rsergo@mail.ru
Doctor of physical and mathematical sciences, head of the department of theoretical and mathematical physics
(89A Shortanova street, Nalchik, Russia)Әдебиет тізімі
- Perevislov S.N. Structure, properties and applications of graphite-like hexagonal boron nitride. Novye ogneupory = New refractories. 2019;(6):35. (In Russ.)
- Naclerio A.E., Kidambi P.R. A review of scalable hexagonal boron nitride (h-BN) synthesis for present and future applications. Advanced Material. 2022;35(6):2207374. doi: 10.1002/adma.202207374
- Ogawa S., Fukushima S., Shimatani M. Hexagonal boron nitride for photonic device applications: A review. Materials. 2023;16(5):2005. doi: 10.3390/ma16052005
- Knobloch T., Illarionov Y.Y., Ducry F. et al. The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nature Electronics. 2021;4:98. doi: 10.1038/s41928-020-00529-x
- Lorenz M., Agreiter J., Smith A.M., Bondybey V.E. Electronic structure of diatomic boron nitride. Journal of Chemical Physics. 1996;104(8):3143.
- Acharya A., Sharma S., Liu, X. et al. A review on van der Waals boron nitride quantum dots. Journal of Carbon Research. 2021;7:35. doi: 10.3390/c7020035
- Cheng-Rong Hsing, Ching Cheng, Jyh-Pin Chou et al. Van der Waals interaction in a boron nitride bilayer. New Journal of Physics. 2014;16:113015. doi: 10.1088/1367- 2630/16/11/113015
- Vuong T.Q.P., Liu S., Van der Lee A. et al. Isotope engineering of van der Waals interactions in hexagonal boron nitride. Nature Materials. 2018;17:152. doi: 10.1038/NMAT5048
- Hongping Li, Wendi Fu, Ke Xu et al. The electronic structure and physicochemical property of boron nitridene. Journal of Molecular Graphics and Modelling. 2020;94:107475. doi: 10.1016/j.jmgm.2019.107475
- Zalizniak V.E., Zolotov O.A., Sidorov K.A. Interatomic potential for metal diborides. Molecular Simulation. 2021;47(12):982. doi: 10.1080/08927022.2021.19359
- Kochaev A., Katin K., Maslov M., Singh S. Covalent and van der Waals interactions in a vertical heterostructure composed of boron and carbon. Physical Review B. 2022;105:235444. doi: 10.1103/PhysRevB.105.235444
- Chkhartishvili L. Relative stability of boron planar clusters in diatomic molecular model. Molecules. 2022;27:1469. doi: 10.3390/molecules27051469
- Chkhartishvili L. Construction of semiclassical interatomic B–B pair potential to characterize all-boron nanomaterials. Characterization and Application of Nanomaterials. 2023;6(1):1. doi: 10.24294/can.v6i1.1852
- Icli B., Sheepwash E., Riis-Johannessen T. et al. Dative boron–nitrogen bonds in structural supramolecular chemistry: Multicomponent assembly of prismatic organic cages. Chemical Science. 2011;2:1719. doi: 10.1039/C1SC00320H
- Chen B., Jäkle F. Boron-nitrogen Lewis pairs in the assembly of supramolecular macrocycles, molecular cages, polymers, and 3D materials. Angewandte Chemie International Edition. 2024;63(3):e202313379. doi: 10.1002/anie.202313379
- Gordon R.G., Kim Y.S. Theory for the forces between closed-shell atoms and molecule. Journal of Chemical Physics. 1972;56:3122. doi: 10.1063/1.1677649
- Waldman M., Gordon R.G. Scaled electron gas approximation for intermolecular forces. Journal of Chemical Physics. 1972;71:1325. doi: 10.1063/1.438433
- Clementi E., Roetti C. Atomic data and nuclear data tables. 1974;14(3-4):177. doi: 10.1016/S0092-640X(74)80016-1
- Koga T. Analytical Hartree-Fock electron densities for atoms He through Lr. Theoretica Chimica Acta. 1997;95:113. doi: 10.1007/BF02341696
- Sokurov A.A. Calculation of integrals in the electron density functional theory in the electron gas approximation using the CUDA technology. Vestnik Sankt-Peterburgskogo universitetata. Seriya 10. Prikladnya matematika. Informatika. Protsessy upravleniya = Bulletin of Saint Petersburg University. Series 10. Applied mathematics. Computer Science. Control Processes. 2024;20(3):335. (In Russ.). doi: 10.21638/spbu10.2024.303
- Pyykkö P., Atsumi M. Molecular single-bond covalent radii for elements 1–118. Chemistry: A European Journal. 2009;15:186. doi: 10.1002/chem.200800987
- Kaplan I.G. Mezhmolekulyarnye vzaimodeystviya. Fizicheskaya interpretatsiya, komp'yuternye raschety i model'nye potentsialy = Intermolecular interactions. Physical interpretation, computer calculations and model potentials. Moscow: BINOM. Laboratoriya znaniy, 2012:397. (In Russ.)
- Rekhviashvili S.Sh., Bukhurova M.M. Adsorption interaction of silver nanoparticles with silicon substrate. Fizika tverdogo tela = Solid state physics. 2025;67(1):175. (In Russ.). doi: 10.61011/FTT.2025.01.59785.224
- Barash Yu.S. Sily Van-Der-Vaal'sa = Van der Waals forces. Moscow: Nauka, 1988:344. (In Russ.)
- Schwerdtfeger P., Nagle J. K. Table of static dipole polarizabilities of the neutral elements in the periodic table. Molecular Physics. 2019;117(9-12):1200.
- Chu X., Dalgarno A. Linear response time-dependent density functional theory for van der Waals coefficients. Journal of Chemical Physics. 2004;121:4083. doi: 10.1063/1.1779576
- Rit M. Nanokonstruirovanie v nauke i tekhnike. Vvedenie v mir nanorascheta = Nanoengineering in science and engineering. Introduction to the world of nanocalculation. Izhevsk: Regulyarnaya i khaoticheskaya dinamika, 2005:160. (In Russ.)
Қосымша файлдар
