Features of determining the parameters of the cubic crystal lattice of clathrate hydrates
- Authors: Shostak N.A.1
-
Affiliations:
- Kuban State Technological University
- Issue: No 2 (2025)
- Pages: 104-115
- Section: PHYSICS
- URL: https://journal-vniispk.ru/2072-3040/article/view/316350
- DOI: https://doi.org/10.21685/2072-3040-2025-2-8
- ID: 316350
Cite item
Full Text
Abstract
Background. The features of determining the parameters of the cubic crystal lattice of clathrate hydrates are considered. Many properties of clathrate hydrates are similar to hexagonal ice, however, the interaction of absorbed molecules with the ice-like crystal lattice has its own characteristics. Materials and methods. The main method used in the work is to obtain the parameters of the functional dependence using the least squares method. A poly-nomial approach to a unified description is proposed in view of the complex nature of the motion of guest molecules with their numerous degrees of freedom and various degrees of coupling of this motion with the host lattice. Results. It is proposed to use the obtained ratio depending on the system temperature and the type of hydrate former. Average discrepancies according to the proposed method for hydrate formers in temperature ranges from 10 to 280 K are 0.04% and do not exceed 0.09%. Conclusions. The developed approach allows to obtain more accurate results in a wide range of conditions.
About the authors
Nikita A. Shostak
Kuban State Technological University
Author for correspondence.
Email: nikeith@mail.ru
Candidate of engineering sciences, associate professor, deputy director of the Higher Engineering School “Oil, gas and energy engineering”
(2 Moskovskaya street, Krasnodar, Russia)References
- Stoll R.D., Bryan G.M. Physical properties of sediments containing gas hydrates. Journal of Geophysical Research. 1979;84(4):1629‒1634.
- Tse J.S., McKinnon W.R., Marshi M. Thermal Expansion of structure I Ethylene Oxide Hydrate. Journal of Physical Chemistry. 1987;91:4188‒4193.
- Hansen T.C.; Falenty A., Kuhs W.F. Lattice constants and expansivities of gas hydrates from 10 K up to the stability limit. Journal of Chemical Physics. 2016;144:054301. doi: 10.1063/1.4940729
- Dyadin Yu.A., Udachin K.A., Bondaryuk I.V. Soedineniya vklyucheniya = Inclusion connections. Novosibirsk: Izd-vo Novosibirskogo un-ta, 1988:92. (In Russ.)
- Hester K.C., Huo Z., Ballard A.L., Koh C.A., Miller K.T., Sloan E.D. Thermal Expansivity for sI and sII Clathrate Hydrates. Journal of Physical Chemistry. 2007;111:8830‒8835. doi: 10.1021/jp0715880
- Alavi S., Ripmeester J.A. Effect of small cage guests on hydrogen bonding of tetrahydrofuran in binary structure II clathrate hydrates. Journal of Chemical Physics. 2012;137:054712. doi: 10.1063/1.4739928
- Makogon Yu.F. Density of natural gas hydrates. Trudy MINKhiGP = Proceedings of Gubkin Russian State University of Oil and Gas. 1970;(88):232–235. (In Russ.)
- Stackelberg M., Müller H.R. Feste gashydrate II. Z. Electrochem. 1954;58(1):25‒39.
- Stackelberg M., Jahns W. Feste gashydrate VI. Die ditteraufweit ungsarbeit. Z. Electrochem. 1954;58(3):162‒164.
- Pauling L.A., Marsh R.E. The structure of chlorine hydrate. Proceedings of the National Academy of Sciences USA. 1952;38:112‒118.
- Stackelberg M., Meuthen B. Feste Gashydrate VII. Hydrate wasscrloslicher. Ather. Z. Electrochem. 1958;62:130‒131.
- Bertie J.E., Othen D.A. The infrared spectrum of ethylene oxide clathrate at 100 K between 4000 and 360 cm-1. Canadian Journal of Chemistry. 1973;51(8):1159‒1168.
- Gough S.R., Davidson D.W. Composition of tetrahydrofuran hydrate and the effect of pressure on decomposition. Canadian Journal of Chemistry. 1971;49:2691‒2699.
- Wittstruck T.A., Brey W.S., Buswell A.M., Rodebush W.H. Solid hydrates of some halomethanes. Journal of Chemical & Engineering Data. 1961;6(3):343‒346.
- Tanaka H., Tamai Y., Koga K. Large thermal expansivity of clathrate hydrates. The Journal of Physical Chemistry B. 1997;101(33): 6560‒6565.
- McIntyre J.A., Petersen D.K. Thermal and composition expansion of clathrates in the Ethylene Oxide ‒ Water system. Journal of Chemical Physics. 1967;47(10):3850‒3852.
- Takeya S., Hori A., Uchida T., Ohmura R. Crystal Lattice Size and Stability of Type H Clathrate Hydrates with Various Large-Molecule Guest Substances. Journal of Physical Chemistry B. 2006;110:12943. doi: 10.1021/jp060198v
- Imasato K., Murayama K., Takeya S., Alavi S., Ohmura R. Effect of nitrogen atom substitution in cyclic guests on properties of structure H clathrate hydrates. Canadian Journal of Chemistry. 2015;93(8):906‒912. doi: 10.1139/cjc-2014-0553
- Hester K.C., Huo Z., Ballard A.L., Koh C.A., Miller K.T., Sloan E.D. Thermal expansivity for sI and sII clathrate hydrates. Journal of Physical Chemistry B. 2007;111(30):8830‒8835. doi: 10.1021/jp0715880.
- Zaporozhets E.P., Shostak N.A. Mathematical modeling of some features of gas hydrate dissociation. Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernykh tekhnologiy = Bulletin of Voronezh State University of Engineering Technology. 2018;80(2):313‒322. (In Russ.)
- Ogienko A.G., Kurnosov A.V., Manakov A.Y., Larionov E.G., Ancharov A.I., Sheromov M.A., Nesterov A.N. Gas hydrates of argon and methane synthesized at high pressures: composition, thermal expansion, and self-preservation. Journal of Physical Chemistry B. 2006;110(6):2840‒2846. doi: 10.1021/jp053915e
- Wilms D.A., Haute A.A. Thermodynamics and composition of chlorine hydrates. Desalination. 1973;12(3):379‒393.
- Shpakov V.P., Tse J.S., Tulk C.A., Kvamme B., Belosludov V.R. Elastic moduli calculation and instability in structureI methane clathrate hydrate. Chemical Physics Letters. 1998;282:107‒114. doi: 10.1016/s0009-2614(97)01241-4
- Bourry C., Charlou J.-L., Donval J.-P., Brunelli M., Focsa C., Chazallon B. X-ray synchrotron diffraction study of natural gas hydrates from African margin art. no. L22303. Geophysical Research Letters. 2007;3422:NIL46‒NIL50. doi: 10.1029/2007GL031285
- Ikeda T., Mae S. Distortion of Host Lattice in Clathrate Hydrate as a Function of Guest Molecule and Temperature. Journal of Physical Chemistry A. 2000;104(46):10623‒10630.
- Gutt C., Asmussen B., Press W., Johnson M.R., Handa Y.P., Tse J.S. The structure of deuteaed methane-hydrate. Journal of Chemical Physics. 2000;113:4713‒4721.
- Udachin K.A., Ratcliffe C.I., Ripmeester J.A. Structure, composition, and thermal expansion of CO2 hydrate from single crystal X-ray diffraction measurements. Journal of Physical Chemistry. 2001;105:4200‒4204.
- Huo Z. Hydrate Phase Equilibria Measurements by X-Ray Diffraction and Raman Spectroscopy: PhD Thesis. Colorado School of Mines, 2002:171.
- Jones C.Y., Marshall S.L., Chakoumakos B.C., Rawn C.J., Ishii Y. Structure and thermal expansivity of tetrahydrofuran deuterate determined by neutron powder diffraction. Journal of Physical Chemistry B. 2003;107:6026‒6031.
- Takeya S., Fujihisa H., Hachikubo A., Sakagami H., Gotoh Y. Distribution of butane in the host water cage of structure II clathrate hydrates. Chemistry. 2014;20(51):17207‒17213. doi: 10.1002/chem.201403575
- Igawa N., Taguchi T., Hoshikawa A., Fukazawa H., Yamauchi H., Utsumi W., Ishii Y. CO2 motion in carbon dioxide deuterohydrate determined by applying maximum entropy method to neutron powder diffraction data. Journal of Physics and Chemistry of Solids. 2010;6(71):899‒905.
- Jäger A., Václav V., Johannes G., Roland S., Hrubý J. Phase equilibria with hydrate formation in H2O-CO2 mixtures modeled with reference equations of state. Fluid Phase Equilibria. 2013;338:100‒113.
- Takeya S., Muromachi S., Yamamoto Y., Umeda H., Matsuo S. Preservation of CO2 hydrate under different atmospheric conditions. Fluid Phase Equilibria. 2016;413:137‒141.
Supplementary files
