Analysis of design of rotating cutting tools for osseodensification in implant dentistry

Cover Page

Cite item

Full Text

Abstract

Osseodensification is an innovative surgical instrumentation technique based on additive (non-cutting) drilling using special burs. The osseodensification burs should operate in a clockwise direction to drill holes and in a counterclockwise direction to compact the osteotomy walls. For these purposes, the burs have special design features, like conical contour shape, increased number of helical flutes and negative rake angle on their peripheral part. However, although other parameters and features of the burs define their overall performance, they are not described sufficiently, and their influence on the surgical quality is almost unknown both for clinicians and tool manufacturers. The purpose of the present research is to identify the key design features of burs for osseodensification and their functional relationship with the qualitative indices of the procedure basing on analytical review of research papers and patent documents. It will help to further improve the design of osseodensification burs and thereby enhance the surgical quality and, ultimately, patient satisfaction. Results: The most important design features and parameters of osseodensification burs are identified. Thereon, the structural model of osseodensification bur is first represented as a hypergraph. Basing on the analysis of previous researches, functional relationships between design parameters of osseodensification burs, osseodensification procedure conditions and procedure performance data were established and for the first time described in the comprehensive form of a hypergraph. Conclusion: This study provides formal models that form the basis of database structure and its control interface, which will be used in the later developed computer-aided design module to create advanced types of burs under consideration. These models will also help to make good experimental designs used in studies aimed at improving the efficiency of osseodensification procedure.

About the authors

A. V. Isaev

MSUT STANKIN

Author for correspondence.
Email: a.isaev@stankin.ru

M. L. Isaeva

The National Medical Research Center for Otorhinolaryngology of the Federal Medico-Biological Agency of Russia

Email: kuzukina@mail.ru

N. I. Krikheli

Russian University of Medicine

Email: krikheli_ni@rosunimed.ru

A. M. Tsitsiashvili

Russian University of Medicine

Email: amc777@yandex.ru

S. N. Grigoriev

MSUT STANKIN

Email: s.grigoriev@stankin.ru

P. Yu. Peretyagin

MSUT STANKIN

Email: p.peretyagin@stankin.ru

References

  1. Cáceres F., Troncoso C., Silva R., Pinto N. Effects of osseodensification protocol on insertion, removal torques, and resonance frequency analysis of BioHorizons® conical implants: An ex vivo study // Journal of Oral Biology and Craniofacial Research. – 2020. – Vol. 10. – P. 625–628.
  2. Stavropoulos A., Nyengaard J. R., Lang N. P., Karring T. Immediate loading of single SLA implants: Drilling vs. osteotomes for the preparation of the implant site // Clinical Oral Implants Research. – 2008. – Vol. 19 (1). – P. 55–65.
  3. Pandey R. K., Panda S. Drilling of bone: A comprehensive review // Journal of Clinical Orthopaedics and Trauma. – 2013. – Vol. 4. – P. 15–30.
  4. Punnoose K., Kumar G. A., B M., Govindarajulu R., V A. A. E., Babu J. S. C. S., Nayyar A. S. Osseodensification implant site preparation technique and subsequent implant stability: A pilot study // Journal of Orthodontic Science. – 2022. – Vol. 11. – P. 50.
  5. Huwais S., Meyer E. G. A novel osseous densification approach in implant osteotomy preparation to increase biomechanical primary stability, bone mineral density, and bone-to-implant contact // International Journal of Oral and Maxillofacial Implants. – 2017. – Vol. 32 (1). – P. 27–36.
  6. Bhargava N., Perrotti V., Caponio V. C. A., Matsubara V. H., Patalwala D., Quaranta A. Comparison of heat production and bone architecture changes in the implant site preparation with compressive osteotomes, osseodensification technique, piezoelectric devices, and standard drills: An ex vivo study on porcine ribs // Odontology. – 2023. – Vol. 111 (1). – P. 142–153.
  7. Campos F. E., Gomes J. B., Marin C., Teixeira H. S., Suzuki M., Witek L., Zanetta-Barbosa D., Coelho P. G. Effect of drilling dimension on implant placement torque and early osseointegration stages: An experimental study in dogs // Journal of Oral and Maxillofacial Surgery. – 2012. – Vol. 70 (1). – P. 43–50.
  8. Mullings O., Tovar N., Abreu de Bortoli J. P., Parra M., Torroni A., Coelho P. G., Witek L. Osseodensification versus subtractive drilling techniques in bone healing and implant osseointegration: Ex vivo histomorphologic/histomorphometric analysis in a low-density bone ovine model // International Journal of Oral and Maxillofacial Implants. – 2021. – Vol. 36 (5). – P. 903–909.
  9. Fontes Pereira J., Costa R., Nunes Vasques M., Salazar F., Mendes J. M., Infante da Câmara M. Osseodensification: An alternative to conventional osteotomy in implant site preparation: A systematic review // Journal of Clinical Medicine. – 2023. – Vol. 12. – P. 7046.
  10. Hung C. C., Liu T. C. Graftless sinus augmentation via crestal sinus floor elevation using Densah burs with simultaneous implant placement: A clinical report after two years in service // SVOA Dentistry. – 2023. – Vol. 4 (4). – P. 128–136.
  11. Elghobashy M. T. M., Shaaban A. M., Melek L. N. F. Radiographic comparison between Densah burs and osteotome for graftless internal sinus lifting with simultaneous implant placement: A randomized clinical trial // International Journal of Oral and Maxillofacial Surgery. – 2023. – Vol. 52 (3). – P. 388–395.
  12. Patent 2269966 RU, A61C 3/02. Dental borer / Samojlovich M. I., Ivakhin A. V., Pastushenko V. N.; Appl. No. 2002103552/14; filed 14.02.2002; publ. 20.02.2006, Bull. No. 5.
  13. Patent 2515400 RU, A61C 3/02. Implant surgical drill / Moon D. K., Eom T. G., Li T. E.; assignee: OSSTEMIMPLANT CO., LTD. (KR); Appl. No. 2012134550/14; filed 13.09.2010; publ. 10.05.2014, Bull. No. 13.
  14. Patent 2007967 RU, A61C 3/02. Dental drill / Vinokur V. Sh., Ignashin Yu. P., Utyashev R. A., Shakirov N. Kh., Shvetsov M. A.; assignee: Vinokur V. Sh.; Appl. No. 5019506/14; filed 01.10.1991; publ. 28.02.1994.
  15. Patent 2794293 RU, A61C 3/02. Dental tool / Burke E., Sollberger D., Nussbaumer S., Holst S., Geiselhoeringer H., Quarry A., Weitzel J.; assignee: Nobel Biocare Services AG (CH); Appl. No. 2019120420; filed 30.01.2017; publ. 14.04.2023, Bull. No. 11.
  16. Patent 9022783 US, A61C 3/02, A61C 8/00. Fluted osteotome and surgical method for use / Huwais S.; assignee: Huwais IP Holding LLC, Jackson, MI, US; Appl. No. 13/427,391; prior publication: US 2012/0244497 A1, 27.09.2012.
  17. Sabitov V. Kh. Medical Instruments. – Moscow: Meditsina, 1985. – 175 p.
  18. Yang K., Ren Y. Nickel-free austenitic stainless steels for medical applications // Science and Technology of Advanced Materials. – 2010. – Vol. 11 (1). – P. 014105.
  19. Oliveira N., Alaejos-Algarra F., Mareque-Bueno J., Ferrés-Padró E., Hernández-Alfaro F. Thermal changes and drill wear in bovine bone during implant site preparation: A comparative in vitro study of twisted stainless steel and ceramic drills // Clinical Oral Implants Research. – 2013. – Vol. 23. – P. 963–969.
  20. Grechishnikov V. A., Isaev A. V., Kozochkin M. P. A generalized approach to designing profile milling cutters equipped with replaceable throw-away ceramic cutting inserts // In: Proc. of the International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon 2020), Vladivostok, Russia. – 2020. – P. 1–8.
  21. Soldatos N., Pham H., Fakhouri W. D., Ngo B., Lampropoulos P., Tran T., Weltman R. Temperature changes during implant osteotomy preparations in human cadaver tibiae comparing MIS® straight drills with Densah® burs // Genes. – 2022. – Vol. 13. – P. 1716.
  22. Grigoriev S., Yanushevich O., Krikheli N., Vereschaka A., Milovich F., Andreev N., Seleznev A., Shein A., Kramar O., Kramar S., et al. Investigation of the nature of the interaction of Me-MeN-(Me,Mo,Al)N coatings (where Me = Zr, Ti, or Cr) with a contact medium based on the Ni-Cr system // Coatings. – 2022. – Vol. 12. – P. 819.
  23. Grigoriev S., Pristinskiy Y., Volosova M., Fedorov S., Okunkova A., Peretyagin P., Smirnov A. Wire electrical discharge machining, mechanical and tribological performance of TiN reinforced multiscale SiAlON ceramic composites fabricated by spark plasma sintering // Applied Sciences. – 2021. – Vol. 11. – P. 657.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».