What Impact does Artificial Intelligence have on Corporate Governance?

Abstract

In recent years, the topic of ‘digital transformation’ has become a primary focus in the areas of business and research. Among digital technologies, the area attracting the most investment is artificial intelligence (AI). Research shows that AI can benefit corporate governance in a variety of ways.

In this article, we identify two academic streams on the topic and evaluate the existing literature. The first stream analyses AI-driven improvements in governance mechanisms such as boards of directors (BoD). The second stream explores the digital-driven organisational changes and broad governance adaptations necessary for AI improvements. We evaluate the evidence for AI implementation in improving and evolving traditional aspects of corporate governance.

The examined authors argue that digital technologies transform the nature of a firm, making it less based on traditional sources of authority. There is consensus that this environment calls for fundamental reconsideration of corporate governance and for the revision of regulatory models, moving towards decentralisation. Specific areas examined in these contexts include jobs automation, agency conflict, auditing processes, the selection of BoD members, compliance functions, data analytics, and capital allocation.
The examined research indicates that AI improves corporate governance and lowers agency cost by automating decision making using real-time big data analysis. However, while researchers propose multiple novel approaches to governance, practical implementation of those approaches or an empirical analysis of the results of such experiments is yet to occur.

Despite the consensus among researchers on the positive impact of AI for governance and implementations as making AI a part of BoD, open questions and skepticism persist. This is indicative of the immaturity of AI as a technology in terms of development and implementation, and as such there is ample scope for future research. We propose multiple areas within this article where opportunities exist for further insight within this burgeoning field.

About the authors

I. Ivaninskiy

Author for correspondence.
Email: iivaninskiy@hse.ru

I. Ivashkovskaya

Email: iivashkovskaya@hse.ru

References

  1. Schwab K. The fourth industrial revolution. New York: Currency Books; 2017. 192 p.
  2. Grove H., Clouse M., Schaffner L.G., Digitalization impacts on corporate governance. Journal of Governance and Regulation. 2018;7(4):51-63. doi: 10.22495/jgr_v7_i4_p6
  3. How to unlock innovation with deep tech. BCG. 2020. URL: https://www.bcg.com/featured-insights/ how-to/invest-in-deep-tech-startups (accessed on 29.07 2020).
  4. Go E.J., Moon J., Kim J. Analysis of the current and future of the Artificial Intelligence in financial industry with Big Data techniques . Global Business and Finance Review. 2020;25(1):102-117. doi: 10.17549/gbfr.2020.25.1.102
  5. Fersht P., Slaby J.R. Robotic automation emerges as a threat to traditional low-cost outsourcing. HfS Research Ltd. 2012. URL: https://www. horsesforsources.com/wp-content/uploads/2016/06/ RS-1210_Robotic-automation-emerges-as-a-threat-060516.pdf
  6. Arrieta A.B., Díaz-Rodríguez N., Del Ser J., Bennetot A., Tabik S., Barbado A., García S., Gil-López S., Molina D., Benjamins R., Chatila R., Herrera F. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion. 2020;58:82-115. doi: 10.1016/j.inffus.2019.12.012
  7. Franklin S. A foundational architecture for artificial general intelligence. In: Goertzel B., Wang P., eds. Advances in artificial general intelligence: Concepts, architectures and algorithms. Amsterdam: IOS Press; 2007;157:36-54. (Frontiers in Artificial Intelligence and Applications Series).
  8. Goertzel B. The AGI revolution: An inside view of the rise of Artificial General Intelligence. Los Angeles, CA: Humanity+ Press; 2016. 612 p.
  9. Yu L., Wang S., Lai K.K. An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: The case of credit scoring. European Journal of Operational Research. 2009;195(3):942-959. doi: 10.1016/j.ejor.2007.11.025
  10. Feijóo C., Kwon Y., Bauer J.M., Bohlin E., Howell B., Jain R., Potgieter P., Vu K., Whalley J., Xia J. Harnessing artificial intelligence (AI) to increase wellbeing for all: The case for a new technology diplomacy. Telecommunications Policy. 2020;44(6):101998. doi: 10.1016/j.telpol.2020.101988
  11. Jarrahi M.H. Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons. 2018;61(4):577586. doi: 10.1016/j.bushor.2018.03.007
  12. Manita R., Elommal N., Baudier P., Hikkerova L. The digital transformation of external audit and its impact on corporate governance. Technological Forecasting and Social Change. 2020;150:119751. DOI: 10.1016/j. techfore.2019.119751
  13. Lombardi D.R., Bloch R., Vasarhelyi M.A. The current state and future of the audit profession. Current Issues in Auditing. 2015;9(1):10-16. doi: 10.2308/ciia-50988
  14. Krahel J.P., Titera W.R. Consequences of Big Data and formalization on accounting and auditing standards. Accounting Horizons. 2015;29(2):409-422. doi: 10.2308/acch-51065
  15. Issa H., Sun T., Vasarhelyi M.A. Research ideas for artificial intelligence in auditing: The formalization of audit and workforce supplementation. Journal of Emerging Technologies in Accounting. 2016;13(2):1-20. doi: 10.2308/jeta-10511
  16. Chan D.Y., Vasarhelyi M.A. Innovation and practice of continuous auditing. International Journal of Accounting Information Systems. 2011;12(2):152-160. doi: 10.1016/j.accinf.2011.01.001
  17. Zhang J., Yang X., Appelbaum D.A. Toward effective Big Data analysis in continuous auditing. Accounting Horizons. 2015;29(2):469-476. doi: 10.2308/acch51070
  18. Erel I., Stern L.H., Tan C., Weisbach M.S. Selecting directors using machine learning. NBER Working Paper. 2018;(24435). URL: https://www.nber.org/ papers/w24435.pdf
  19. Cunningham L.M., Stein S.E. Using visualization software in the audit of revenue transactions to identify anomalies. Issues in Accounting Education. 2018;33(4):33-46. doi: 10.2308/iace-52146
  20. Wang R., Asghari V., Hsu S.-C., Lee C.-J., Chen J.-H. Detecting corporate misconduct through random forest in China's construction industry. Journal of Cleaner Production. 2020;268:122266. DOI: 10.1016/j. jclepro.2020.122266
  21. Bae J.K. Predicting financial distress of the South Korean manufacturing industries. Expert Systems with Applications. 2012;39(10):9159-9165. doi: 10.1016/j.eswa.2012.02.058
  22. Danaher J., Hogan M.J., Noone C., Kennedy R., Behan A., De Paor A., Felzmann H., Haklay M., Khoo S.-M., Morison J., Murphy M.H. et al. Algorithmic governance: Developing a research agenda through the power of collective intelligence. Big Data & Society. 2017;4(2). doi: 10.1177/2053951717726554
  23. Dignam A. Artificial intelligence, tech corporate governance and the public interest regulatory response. Cambridge Journal of Regions, Economy and Society. 2020;13(1):37-54. doi: 10.1093/cjres/rsaa002
  24. Williams B.A., Brooks C.F., Shmargad Y. How algorithms discriminate based on data they lack: Challenges, solutions, and policy implications. Journal of Information Policy. 2018;8:78-115. doi: 10.5325/jinfopoli.8.2018.0078
  25. Fenwick M., McCahery J.A., Vermeulen E.P. The end of 'corporate' governance: Hello 'platform' governance. European Business Organization Law Review. 2019;20(1):171-199. doi: 10.1007/s40804-019-00137-z
  26. Parker G.G., Van Alstyne M.W., Choudary S.P. Platform revolution: How networked markets are transforming the economy and how to make them work for you. New York, London: W.W. Norton & Co.; 2016. 352 p.
  27. Fenwick M., Vermeulen E.P. Technology and corporate governance: Blockchain, crypto, and artificial intelligence. Texas Journal of Business Law. 2019;48(1):1-15.
  28. Luna A.J., Costa C.P., Moura H.P., Novaes M.A., do Nascimento C.A. Agile governance in information and communication technologies: Shifting paradigms. Journal of Information Systems and Technology Management. 2010;7(2):311-334. doi: 10.4301/S1807-17752010000200004
  29. Ansell C., Gash A. Collaborative governance in theory and practice. Journal of Public Administration Research and Theory. 2008;18(4):543-571. doi: 10.1093/jopart/mum032
  30. Farrow E. To augment human capacity - Artificial intelligence evolution through causal layered analysis. Futures. 2019;108:61-71. DOI: 10.1016/j. futures.2019.02.022
  31. Eliasy A., Przychodzen J. The role of AI in capital structure to enhance corporate funding strategies. Array. 2020;6:100017. DOI: 10.1016/j. array.2020.100017
  32. Gasser U., Almeida V.A. A layered model for AI governance. IEEE Internet Computing. 2017;21(6):5862. doi: 10.1109/MIC.2017.4180835
  33. Domingos P. The master algorithm: How the quest for the ultimate learning machine will remake our world. New York: Basic Books; 2015. 354 p.
  34. Lu H., Li Y., Chen M., Kim H., Serikawa S. Brain intelligence: Go beyond artificial intelligence. Mobile Networks and Applications. 2018;23(2):368-375. doi: 10.1007/s11036-017-0932-8
  35. De Mauro A., Greco M., Grimaldi M. A formal definition of Big Data based on its essential features. Library Review. 2016;65(3):122-135. DOI: 10.1108/ LR-06-2015-0061
  36. Chen M., Mao S., Liu Y. Big data: A survey. Mobile Networks and Applications. 2014;19(2):171-209. doi: 10.1007/s11036-013-0489-0
  37. Zhu C. Big data as a governance mechanism. The Review of Financial Studies. 2019;32(5):2021-2061. doi: 10.1093/rfs/hhy081
  38. Al-Htaybat K., von Alberti-Alhtaybat L. Big Data and corporate reporting: Impacts and paradoxes. Accounting, Auditing & Accountability Journal. 2017;30(4):850-873. doi: 10.1108/AAAJ-07-2015-2139
  39. Ashbaugh H., Warfield T.D. Audits as a corporate governance mechanism: Evidence from the German market. Journal of International Accounting Research. 2003;2(1):1-21. doi: 10.2308/jiar.2003.2.1.1
  40. Cao M., Chychyla R., Stewart T. Big Data analytics in financial statement audits. Accounting Horizons. 2015;29(2):423-429. doi: 10.2308/acch-51068
  41. Yoon K., Hoogduin L., Zhang L. Big Data as complementary audit evidence. Accounting Horizons. 2015;29(2):431-438. doi: 10.2308/acch-51076
  42. Van den Broek T., van Veenstra A.F. Governance of big data collaborations: How to balance regulatory compliance and disruptive innovation. Technological Forecasting and Social Change. 2018;129:330-338. doi: 10.1016/j.techfore.2017.09.040.
  43. Burn-Murdoch J. Study: Less than 1% of the world's data is analysed, over 80% is unprotected. The Guardian. Dec. 12, 2012. URL: https://www.theguardian.com/news/datablog/2012/dec/19/big-data-study-digital-universe-global-volume.
  44. Mendling J., Decker G., Hull R., Reijers H.A., Weber I. How do machine learning, robotic process automation, and blockchains affect the human factor in business process management? Communications of the Association for Information Systems. 2018;43(1):297-320. doi: 10.17705/1CAIS. 04319
  45. Crosman P. How Artificial Intelligence is reshaping jobs in banking. American Banker. 2018;183(88):1. URL: http://files.parsintl.com/eprints/S060220.pdf
  46. Van der Aalst W.M.P., Bichler M., Heinzl A. Robotic process automation. Business & Information Systems Engineering. 2018;60(4):269-272. DOI: 10.1007/ s12599-018-0542-4
  47. Acemoğlu D., Restrepo P. Robots and jobs: Evidence from US labor markets. NBER Working Paper. 2017;(23285). URL: https://www.nber.org/papers/ w23285.pdf
  48. Moffitt K.C., Rozario A.M., Vasarhelyi M.A. Robotic process automation for auditing. Journal of Emerging Technologies in Accounting. 2018;15(1):1-10. doi: 10.2308/jeta-10589
  49. Lacity M., Willcocks L.P., Craig A. Robotic process automation: Mature capabilities in the energy sector. The Outsourcing Unit Working Research Paper. 2015;(15/06). URL: http://eprints.lse.ac.uk/64520/1/ OUWRPS_15_06_published.pdf
  50. Aguirre S., Rodriguez A. Automation of a business process using robotic process automation (RPA): A case study. In: Applied computer sciences in engineering: Workshop on engineering applications 2017. Cham: Springer-Verlag; 2017:65-71. doi: 10.1007/978-3-319-66963-2_7
  51. Brynjolfsson E., Mcafee A.N. The business of artificial intelligence. Harvard Business Review. July 21, 2017. URL:https://starlab-alliance.com/wp-content/ uploads/2017/09/The-Business-of-ArtificialIntelligence.pdf
  52. Kibria M.G., Nguyen K., Villardi G.P., Zhao O., Ishizu K., Kojima F. Big data analytics, machine learning, and artificial intelligence in next-generation wireless networks. IEEE Access. 2018;6:32328-32338. doi: 10.1109/ACCESS.2018.2837692
  53. Mullainathan S., Spiess J. Machine learning: An applied econometric approach. Journal of Economic Perspectives. 2017;31(2):87-106. doi: 10.1257/jep.31.2.87
  54. Lightbourne J. Algorithms & fiduciaries: Existing and proposed regulatory approaches to artificially intelligent financial planners. Duke Law Journal. 2017;67(3/4):651-679.
  55. Tokic D. BlackRock Robo-Advisor 4.0: When artificial intelligence replaces human discretion. Strategic Change. 2018;27(4):285-290. DOI: 10.1002/ jsc. 2201
  56. Butcher J., Beridze I. What is the state of artificial intelligence governance globally? The RUSI Journal. 2019;164(5-6):88-96. doi: 10.1080/03071847.2019.1694260
  57. Miller T. Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence. 2019;267:1-38. doi: 10.1016/j.artint.2018.07.007
  58. Murdoch W.J., Singh C., Kumbier K., Abbasi-Asl R., Yu B. Interpretable machine learning: Definitions, methods, and applications. Proceedings of the National Academy of Sciences. 2019;116(44):201900654. doi: 10.1073/pnas. 1900654116
  59. Willcocks L.P., Lacity M., Craig A. The IT function and robotic process automation. The Outsourcing Unit Working Research Paper. 2015;(15/05). URL: https://eprints.lse.ac.uk/64519/1/OUWRPS_15_05_ published.pdf
  60. Mosco G.D. AI and boards of directors: Preliminary notes from the perspective of Italian corporate law. SSRN Electronic Journal. 2020. DOI: 10.2139/ ssrn. 3531924
  61. Frey C.B., Osborne M.A. The future of employment: How susceptible are jobs to computerisation? Technological Forecasting and Social Change. 2017;114:254-280. DOI: 10.1016/j. techfore.2016.08.019
  62. Moll J., Yigitbasioglu O. The role of internet-related technologies in shaping the work of accountants: New directions for accounting research. The British Accounting Review. 2019;51(6):100833. doi: 10.1016/j.bar.2019.04.002
  63. Carcello J.V., Hermanson D.R., Ye Z. Corporate governance research in accounting and auditing: Insights, practice implications, and future research directions. Auditing: A Journal of Practice & Theory. 2011;30(3):1-31. doi: 10.2308/ajpt-10112
  64. Jensen M.C., Meckling W.H. Theory of the firm: Managerial behavior, agency costs and ownership structure. Journal of Financial Economics. 1976;3(4):305-360. doi: 10.1016/0304-405X(76)90026-X
  65. Beisland L.A., Mersland R., Strøm R.Ø. Audit quality and corporate governance: Evidence from the microfinance industry. International Journal of Auditing. 2015;19(3):218-237. DOI: 10.1111/ ijau. 12041
  66. Hope O.-K., Kang T., Thomas W., Yoo Y.K. Culture and auditor choice: A test of the secrecy hypothesis. Journal of Accounting and Public Policy. 2008;27(5):357-373. DOI: 10.1016/j. jaccpubpol.2008.07.003
  67. Wallace W.A. The economic role of the audit in free and regulated markets: A look back and a look forward. Research in Accounting Regulation. 2004;17:267-298. doi: 10.1016/S1052-0457(04)17012-4
  68. Jeacle I. "And the BAFTA goes to [...]": The assurance role of the auditor in the film awards ceremony. Accounting, Auditing & Accountability Journal. 2014;27(5):778-808. doi: 10.1108/AAAJ-03-2013-1252
  69. Andon P., Free C., Sivabalan P. The legitimacy of new assurance providers: Making the cap fit. Accounting, Organizations and Society. 2014;39(2):75-96. doi: 10.1016/j.aos.2014.01.005
  70. Francis J.R., Wang D. The joint effect of investor protection and Big 4 audits on earnings quality around the world. Contemporary Accounting Research. 2008;25(1):157-191. DOI: 10.1506/ car.25.1.6
  71. Libert B., Beck M., Bonchek M. AI in the boardroom: The next realm of corporate governance. MIT Sloan Management Review. Oct. 19, 2017. URL: https://static1.squarespace.com/ static/576007632b8ddee314f02a2f/t/5c67b50c4e1 7b62748153034/1550300434251/MITSMR+-+AI+in +the+boardroom%2C+the+next+realm+of+corporat e+governance.pdf
  72. Kim D., Song S., Choi B.-Y. Data deduplication for data optimization for storage and network systems. Cham: Springer International Publishing; 2016. 262 p.
  73. Kitchin R. Big Data, new epistemologies and paradigm shifts. Big Data & Society. 2014;1(1). doi: 10.1177/2053951714528481
  74. Kokina J., Davenport T.H. The emergence of artificial intelligence: How automation is changing auditing. Journal of Emerging Technologies in Accounting. 2017;14(1):115-122. doi: 10.2308/jeta-51730
  75. Roe M.J. A political theory of American corporate finance. Columbia Law Review. 1991;91(1):10-67. doi: 10.2307/1122856
  76. Warther V.A. Board effectiveness and board dissent: A model of the board's relationship to management and shareholders. Journal of Corporate Finance. 1998;4(1):53-70. doi: 10.1016/S0929-1199(97)00009-6
  77. Buchanan B., Netter J.M., Yang T. Are shareholder proposals an important corporate governance device? Evidence from US and UK shareholder proposals. SSRN Electronic Journal. 2010. DOI: 10.2139/ ssrn. 1572016
  78. Hernandez-Perdomo E., Guney Y., Rocco C.M. A reliability model for assessing corporate governance using machine learning techniques. Reliability Engineering & System Safety. 2019;185:220-231. doi: 10.1016/j.ress.2018.12.027
  79. Hajek P., Henriques R. Mining corporate annual reports for intelligent detection of financial statement fraud - A comparative study of machine learning methods. Knowledge-Based Systems. 2017;128:139152. doi: 10.1016/j.knosys.2017.05.001
  80. Pai P.-F., Hsu M.-F., Wang M. A support vector machine-based model for detecting top management fraud. Knowledge-Based Systems. 2011;24(2):314-321. doi: 10.1016/j.knosys.2010.10.003
  81. Kiron D., Unruh G. Corporate 'purpose' is no substitute for good governance. MIT Sloan Management Review. Apr. 10. 2018. URL: https:// sloanreview.mit.edu/article/corporate-purpose-is-no-substitute-for-good-governance/ (accessed on 29.07.2020).
  82. Kleinberg J., Ludwig J., Mullainathan S., Sunstein C.R. Discrimination in the age of algorithms. Journal of Legal Analysis. 2018;10:113-174. doi: 10.1093/jla/ laz001
  83. Sunstein C.R. Algorithms, correcting biases. Social Research: An International Quarterly. 2019;86(2):499511. URL: http://eliassi.org/sunstein_2019_algs_ correcting_biases.pdf
  84. Montes G.A., Goertzel B. Distributed, decentralized, and democratized artificial intelligence. Technological Forecasting and Social Change. 2019;141:354-358. doi: 10.1016/j.techfore.2018.11.010
  85. Danaher J. The threat of algocracy: Reality, resistance and accommodation. Philosophy & Technology. 2016;29(3):245-268. doi: 10.1007/s13347-015-02111
  86. Pasquale F. The black box society: The secret algorithms that control money and information. Cambridge, London: Harvard University Press; 2015. 320 p .
  87. Zarsky T. The trouble with algorithmic decisions: An analytic road map to examine efficiency and fairness in automated and opaque decision making. Science, Technology, & Human Values. 2016;41(1):118-132. doi: 10.1177/0162243915605575
  88. Katzenbach C., Ulbricht L. Algorithmic governance. Internet Policy Review. 2019;8(4):1-8. doi: 10.14763/2019.4.1424
  89. Evans D.S., Hagiu A., Schmalensee R. Invisible engines: How software platforms drive innovation and transform industries. Cambridge, MA: The MIT Press; 2008. 408 p .
  90. Hagiu A., Wright J. Multi-sided platforms. International Journal of Industrial Organization. 2015;43:162-174. doi: 10.1016/j.ijindorg.2015.03.003
  91. Altman E.J., Tushman M.L. Platforms, open/ user innovation, and ecosystems: A strategic leadership perspective. In: Entrepreneurship, innovation, and platforms: Advances in Strategic Management. 2007;37:177-207. doi: 10.1108/S0742-332220170000037007
  92. Leoni G., Parker L.D. Governance and control of sharing economy platforms: Hosting on Airbnb. The British Accounting Review. 2019;51(6):100814. doi: 10.1016/j.bar.2018.12.001
  93. Beck K., Beedle M., Van Bennekum A., Cockburn A., Cunningham W., Fowler M., Grenning J., Highsmith J., Hunt A., Jeffries R., Kern J. et al. Manifesto for agile software development. 2001. URL: https:// moodle2019-20.ua.es/moodle/pluginfile.php/2213/ mod_resource/content/2/agile-manifesto.pdf (accessed on 16.08.2020).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Ivaninskiy I., Ivashkovskaya I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.