Postcovid alopecia: from the study of pathogenesis to the choice of therapy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Background. A review of the literature data on the problem of alopecia associated with a new coronavirus infection is presented. Information on the etiological and pathogenetic aspects of post-covid alopecia, the role of the immune response and endothelial dysfunction is discussed.

Objective. Assessment of the state of the hemostasis system in patients with postcovid alopecia by thrombodynamics (TD).

Methods. The study included 49 women who were divided into 3 groups: group 1 (n=26) – patients with post-covid alopecia, group 2 (n=13) - patients with alopecia who did not have coronavirus infection, group 3 (n=10) – without manifestations of alopecia. Changes in the indicators of the TD test were detected in patients with alopecia who had a coronavirus infection.

Conclusion. Reports of the development of microcirculatory dysfunction in patients with COVID-19, activation of coagulation, characterized by thrombotic microangiopathy and endotheliitis, are confirmed by the results of studies that revealed disorders of the hemostasis system of prothrombotic orientation (according to the TD test) in most patients with postcovid alopecia. The TD hemostasis test can be an important tool for monitoring the condition of patients with postcovid alopecia, correcting and evaluating the effectiveness of therapy.

About the authors

Anastasia Yu. Nikolaeva

Privolzhsky Research Medical University

Author for correspondence.
Email: ayunikolaeva@yandex.ru

PhD student, Department of Skin and Venereal Diseases

Russian Federation, Nizhny Novgorod

O. A. Bitkina

Privolzhsky Research Medical University

Email: ayunikolaeva@yandex.ru
Russian Federation, Nizhny Novgorod

I. V. Kosheleva

Russian Medical Academy of Continuous Professional Education

Email: ayunikolaeva@yandex.ru
Russian Federation, Moscow

M. V. Presnyakova

Privolzhsky Research Medical University

Email: ayunikolaeva@yandex.ru
Russian Federation, Nizhny Novgorod

K. N. Kontorshchikova

Privolzhsky Research Medical University; N.I. Lobachevsky National Research State University of Nizhny Novgorod

Email: ayunikolaeva@yandex.ru
Russian Federation, Nizhny Novgorod; Nizhny Novgorod

A. A. Dmitrieva

N.I. Lobachevsky National Research State University of Nizhny Novgorod

Email: ayunikolaeva@yandex.ru
Russian Federation, Nizhny Novgorod

P. V. Peretyagin

Privolzhsky Research Medical University

Email: ayunikolaeva@yandex.ru
Russian Federation, Nizhny Novgorod

A. A. Tsyganova

Privolzhsky Research Medical University

Email: ayunikolaeva@yandex.ru
Russian Federation, Nizhny Novgorod

References

  1. Кошелева И.В., Биткина О.А., Шадыжева Л.И. и др. К вопросу о дерматологических аспектах новой коронавирусной инфекции (COVID-19). Фарматека. 2021;28(8):42–7. [Kosheleva I.V., Bitkina O.A., Shadyzheva L.I. On the dermatological aspects of the novel coronavirus infection (COVID-19). Farmateka. 2021;28(8):42–7. (In Russ.)]. doi: 10.18565/pharmateca.2021.8.42-47.
  2. Tang Y., Liu J., Zhang D., et al. Cytokine storm in COVID19: the current evidence and treatment strategies. Front Immunol. 2020;11:1708. doi: 10.3389/fimmu.2020.01708.
  3. Chen G., Wu D., Guo W., et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130:2620–29.
  4. Mehta P., McAuley D.F., Brown M., et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–34. doi: 10.1016/S0140-6736(20)30 628-00.
  5. Wollina U., Karadag A.S., Rowland-Payne C., et al. Cutaneous signs in COVID-19 patients: a review. Dermatol Ther. 2020;33(5):e13549. doi: 10.1111/dth.13549.
  6. Самолюк М. О., Григорьева Н. Ю. Современное представление о дисфункции эндотелия у больных с коморбидной сердечно-легочной патологией (обзор). Медицинский альманах. 2020;1:27–35. [Samolyuk M. O., Grigor’eva N. Yu. Modern concept of endothelial dysfunction in patients with comorbid cardiopulmonary pathology (review). Meditsinskii al’manakh. 2020;1:27–35. (In Russ.)].
  7. Bradley B.T., Maioli H., Johnston R., et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet. 2020;396(10247):320–32. doi: 10.1016/S0140-6736(20)31305-2.
  8. Власова Т.И., Петрищев Н.Н., Власов Т.Д. Дисфункция эндотелия как типовое патологическое состояние. Регионарное кровообращение и микроциркуляция. 2022;21(2):4–15. [Vlasova T.I., Petrishchev N.N., Vlasov T.D. Endothelial dysfunction as a typical pathological condition. Regionarnoe krovoobrashchenie i mikrotsirkulyatsiya. 2022;21(2):4–15. (In Russ.)].
  9. Ratajczak M.Z., Bujko K., Ciechanowicz A., et al. SARS-CoV-2 Entry Receptor ACE2 Is Expressed on Very Small CD45- Precursors of Hematopoietic and Endothelial Cells and in Response to Virus Spike Protein Activates the Nlrp3 Inflammasome. Stem Cell Rev Rep. 2021;17:266–77. doi: 10.1007/s12015-020-10010-z.
  10. Верткин А.Л., Авдеев С.Н., Ройтман Е.В. и др. Вопросы лечения COVID-19 с позиции коррекции эндотелиопатии и профилактики тромботических осложнений. Согласованная позиция экспертов. Профилактическая медицина. 2021;24(4):45–51. [Vertkin A.L., Avdeev S.N., Roitman E.V., et al. Issues of treatment of COVID-19 from the standpoint of correction of endotheliopathy and prevention of thrombotic complications. Agreed position of experts. Profilakticheskaya meditsina. 2021;24(4):45–51. (In Russ.)]. doi: 10.17116/profmed20212404145.
  11. Varga S., Flammer A.J., Steiger P., et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417–18. doi: 10.1016/S0140-6736(20)30937-5.
  12. Kusadasi N., Sikma M., Huisman A., et al. A Pathophysiological Perspective on the SARS-CoV-2 Coagulopathy. Hemasphere. 2020;4(4):e457. doi: 10.1097/HS9.0000000000000457.
  13. Hanff T.C., Harhay M.O., Brown T.S., et al. Is there an association between COVID-19 mortality and the renin-angiotensin system-a call for epidemiologic investigations. Clin Infect Dis. 2020;71:870–74. doi: 10.1093/cid/ciaa329.
  14. Magro C., Mulvey J.J., Berlin D., et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl. Res. 2020;220:1–13. doi: 10.1016/j.trsl.2020.04.007.
  15. Goa T., Hu M., Zhang X., et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated compliment over-activation. medRxiv. 2020 June 18. doi: 10.1101/2020.03.29.20041962.
  16. Серегина Е.А., Кольцова Е.М., Атауллаха- нов Ф.И., Румянцев А.Г. Лабораторные параметры системы гемостаза у пациентов с COVID-19. Вопросы гематологии, онкологии и иммунопатологии в педиатрии 2021;20(3):147–55. [Seregina E.A., Kol’tsova E.M., Ataullakhanov F.I., Rumyantsev A.G. Laboratory parameters of the hemostasis system in patients with COVID-19. Voprosy gematologii, onkologii i immunopatologii v pediatrii 2021;20(3):147–55. (In Russ.)].
  17. Катханова О.А., Голубченко М.В. Опыт терапии алопеции после СOVID-19. Медицинский совет. 2022;(14):212–18. [Katkhanova O.A., Golubchenko M.V. Experience in the treatment of alopecia after COVID-19. Meditsinskii Sovet. 2022;(14):212–18. (In Russ.)]. doi: 10.21518/2079-701X-2022-16-14-212-218.
  18. Zhou P., Yang X.L., Wang X.G., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–73. doi: 10.1038/s41586-020-2012-7.
  19. Wan Y., Shang J., Graham R., et al. Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. J Virol. 2020;94(7):e00127–20. doi: 10.1128/JVI.00127-20.
  20. Vaduganathan M., Vardeny O., Pharm D., et al. Renin-Angiotensin-Aldosterone System Inhibitors in Patients with Covid-19. N Engl J Med. 2020;382(17):1653–59.
  21. Goren A., McCoy J., Wambier C.G., et al. What does androgenetic alopecia have to do with COVID 19, an insight into a potential new therapy. Dermatol Ther. 2020;33:e13365. doi: 10.1111/dth.13365.
  22. Kabbani N., Olds J.L. Does COVID19 infect the brain? If so, smokers might be at a higher risk. Mol Pharmacol. 2020;97:351–53. doi: 10.1124/molpharm.120.000014.
  23. Zou X., Chen K., Zou J., et al. Single-cell RNA seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14:185–92. doi: 10.1007/s11684-020- 0754-0.
  24. Monteil V., Kwon H., Prado P., et al. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell. 2020;181(4):905–13.e7. doi: 10.1016/j.cell.2020.04.004.
  25. Matar S., Oules B., Sohier P., et al. Cutaneous manifestations in SARS-CoV-2 infection (COVID-19): a French experience and a systematic review of the literature. J Eur Acad Dermatol Venereol. 2020;34(11):e686–9. doi: 10.1111/jdv.16775.
  26. Кошелева И.В., Биткина О.А., Шадыжева Л.И. и др. Поражения кожи, ассоциированные с новой коронавирусной инфекцией (COVID-19). Фарматека. 2020;27(8):8–16. [Kosheleva I.V., Bitkina O.A., Shadyzheva L.I., et al. Skin lesions associated with new coronavirus infection (COVID-19). Farmateka. 2020;27(8):8–16. (In Russ.)]. doi: 10.18565/pharmateca.2020.8.8-16.
  27. Зайратьянц О.В., Cамсонова М.В., Михалева Л.М. и др. Патологическая анатомия COVID-19. Атлас. Под общей ред. О.В. Зайратьянца. М., 2020. 140 с., илл.
  28. Lopez-Leon S., Wegman-Ostrosky T., Perelman C., et al. More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis. MedRxiv. 2021;2021.01.27.21250617.2021. doi: 10.1101/2021.01.27.21250617.
  29. Fernandez-Nieto D., Jimenez-Cauhe J., Ortega-Quijano D., et al. Transverse leukonychia (Mees’ lines) nail alterations in a COVID-19 patient. Dermatol Ther. 2020 Nov;33(6):e13863. doi: 10.1111/dth.13863.
  30. Dominguez-Santas M., Haya-Martinez L., Fernandez-Nieto D., et al. Acute telogen effluvium associated with SARS-CoV-2 infection. Aust J Gen Pract. 2020;49. doi: 10.31128/AJGP-COVID-32.
  31. Radzikowska U., Ding M., Tan G., Zhakparov D., et al. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD. Obesity, hypertension, and COVID-19 risk factors. Allergy. 2020;75:2829–45. doi: 10.1111/all.14429.
  32. Seirafianpour F., Sodagar S., Pour Mohammad A., et al. Cutaneous manifestations and considerations in COVID-19 pandemic: a systematic review. Dermatol Ther. 2020;33(6):e13986. doi: 10.1111/dth.13986.
  33. Olds H., Liu J., Luk K., et al. Telogen effluvium associated with COVID-19 infection. Dermatol Ther. 2021;34(2):e14761. doi: 10.1111/dth.14761.
  34. Nguyen B., Tosti A. Alopecia in patients with COVID-19: A systematic review and meta-analysis. JAAD Int. 2022;7:67–77. doi: 10.1016/j.jdin.2022.02.006.
  35. Goren A., Vano-Galvan S., Wambier C.G., et al. A preliminary observation: male pattern hair loss among hospitalized COVID-19 patients in Spain da potential clue to the role of androgens in COVID-19 severity. J Cosmet Dermatol. 2020;19(7):1545–47. doi: 10.1111/jocd.13443.
  36. Torabi S., Mozdourian M., Rezazadeh R., et al. Androgenetic alopecia in women and men is not related to COVID-19 infection severity: a prospective cohort study of hospitalized COVID-19 patients. J Eur Acad Dermatol Venereol. 2021;35(9):e553–56. doi: 10.1111/jdv.17353.
  37. Wambier C.G., Vano-Galvan S., McCoy J., et al. Androgenetic alopecia present in the majority of patients hospitalized with COVID-19: the «Gabrin sign». J Am Acad Dermatol. 2020;83(2):680–82. doi: 10.1016/j.jaad.2020.05.079.
  38. Yazdanpanah N., Rezaei N. Autoimmune complications of COVID-19. J Med Virol. 2022;94(1):54–62. doi: 10.1002/jmv.27292.
  39. Hayran Y., Yorulmaz A., Gur G., Aktas A. Different hair loss patterns in two pediatric patients with COVID-19-associated multisystem inflammatory syndrome in children. Dermatol Ther. 2021;34(2):e14820. doi: 10.1111/dth.14820.
  40. Кречетова Л.В., Нечипуренко Д.Ю., Шпи- люк М.А. и др. Использование теста тромбодинамики в диагностике нарушений гемостаза у больных COVID-19 разной степени тяжести. Клиническая практика. 2021;12(4):23–37. [Krechetova L.V., Nechipurenko D.Yu., Shpilyuk M.A. et al. The use of the thrombodynamic test in the diagnosis of hemostasis disorders in patients with COVID-19 of varying severity.Klinicheskaya praktika. 2021;12(4):23–37. (In Russ.)]. doi: 10.17816/clinpract88138.
  41. Хуторов Д.Н., Старцева О.Н., Тихомирова О.В., Зыбина Н.Н. Маркеры нарушения плазменного гемостаза в оценке риска церебральной микроангиопатии. Тромбоз, гемостаз и реология. 2022;4:54–63. [Khutorov D.N., Startseva O.N., Tikhomirova O.V., Zybina N.N. Markers of impaired plasma hemostasis in assessing the risk of cerebral microangiopathy. Tromboz, gemostaz i reologiya. 2022;4:54–63. (In Russ.)]. doi: 10.25555/THR.2022.4.1041.
  42. Атауллаханов Ф.И., Баландина А.Н., Варда-нян Д.М. и др. Применение теста тромбодинамики для оценки состояния системы гемостаза: учебно-методические рекомендации. М., 2015. 72 с. [Ataullakhanov F.I., Balandina A.N., Vardanyan D.M. Application of the thrombodynamics test to assess the state of the hemostasis system: educational and methodological recommendations. Moscow, 2015. 72 p. (In Russ.)].
  43. Николаева А.Ю., Цыганова А.А., Перетягин П.В. Оценка состояния микроциркуляторного русла методом лазерной допплеровской флоуметрии у больных с постковидными алопециями. Сборник трудов 15 Международного форума дерматовенерологов и косметологов «Синтез науки и практики» 15–17.03. М., 2022. С. 68–9. [Nikolaeva A.Yu., Tsyganova A.A., Peretyagin P.V. Assessment of the state of the microvasculature by laser Doppler flowmetry in patients with postcovid alopecia. Proceedings of the 15th International Forum of Dermatovenereologists and Cosmetologists «Synthesis of Science and Practice» 15–17.03. Moscow, 2022. P. 68–9. (In Russ.)].

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. Principle of thrombodynamics measurement

Download (350KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».