Herpes simplex viruses: from pathogenesis to effective treatment using immunomodulators

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Herpes simplex viruses (HSV) are extremely common infectious agents characterized by a high degree of contagiousness. Infections caused by HSV types 1 and 2 are often asymptomatic but can cause a range of clinical manifestations, including primary and recurrent vesicular lesions of the oral and labial mucosa, ophthalmological and genital lesions, and viral encephalitis. HSV poses a particular danger to patients in high-risk groups. High susceptibility to herpes infections is typical in newborns due to the physiological immaturity of the immune system, as well as in patients with immunodeficiency conditions of various origins. The immunological response to HSV is a complex process that activates components of both innate and adaptive immunity. Recurrent herpesvirus infections are characterized by an immunological imbalance, characterized by a decrease in the number of CD3+ and CD4+ lymphocytes, a decrease in the immunoregulatory coefficient, and suppression of the functional activity of natural killer cells and antibody-dependent cellular cytotoxicity. Over the course of evolution, HSVs have developed adaptive immunomodulatory mechanisms specifically aimed at evading the T-cell immune response, ensuring lifelong persistence of the pathogen in the host body. In pediatric practice, when clinical markers of immune system deficiency are identified, characterized by recurrent infectious and inflammatory conditions and resistance to conventional treatment methods, the use of pharmacological agents with immunotropic properties is justified. This article discusses the mechanisms of action of inosine pranobex and its efficacy against infections caused by HSV types 1 and 2.

About the authors

I. N. Zakharova

Russian Medical Academy of Continuous Professional Education

Email: zakharova-rmapo@yandex.ru
ORCID iD: 0000-0003-4200-4598

Dr. Sci. (Med.), Professor, Honored Doctor of the Russian Federation, Head of the G.N. Speransky Department of Pediatrics

Russian Federation, Moscow

I. V. Berezhnaya

Russian Medical Academy of Continuous Professional Education

Author for correspondence.
Email: berezhnaya-irina26@yandex.ru
ORCID iD: 0000-0002-2847-6268

Cand. Sci. (Med.), Associate Professor, G.N. Speransky Department of Pediatrics

Russian Federation, Moscow

V. V. Pupikina

Russian Medical Academy of Continuous Professional Education

Email: vika-pupykina@mail.ru
ORCID iD: 0000-0003-2181-8138

Teaching Assistant, G.N. Speransky Department of Pediatrics

Russian Federation, Moscow

V. D. Churilova

Russian Medical Academy of Continuous Professional Education

Email: vika.churilova.2020@yandex.ru
ORCID iD: 0009-0009-0335-0704

Postgraduate Student, G.N. Speransky Department of Pediatrics

Russian Federation, Moscow

References

  1. Gupta R., Warren T., Wald A. Genital herpes. Lancet. 2007;370(9605):2127–37. https://dx.doi.org/10.1016/S0140-6736(07)61908-4
  2. Waggoner-Fountain L.A., Grossman L.B. Herpes simplex virus. Pediatr Rev. 2004;25(3):86–93. https://dx.doi.org/10.1542/pir.25-3-86
  3. Ryder N., Jin F., McNulty A.M., et al. Increasing role of herpes simplex virus type 1 in first-episode anogenital herpes in heterosexual women and younger men who have sex with men, 1992–2006. Sex Transm Infect. 2009;85(6):416–9. https://dx.doi.org/10.1136/sti.2008.033902
  4. Looker K.J., Elmes J.A.R., Gottlieb S.L., et al. Effect of HSV-2 infection on subsequent HIV acquisition: an updated systematic review and meta-analysis. Lancet Infect Dis. 2017;17(12):1303–16. https://dx.doi.org/10.1016/S1473-3099(17)30405-X
  5. Zhu S., Viejo-Borbolla A. Pathogenesis and virulence of herpes simplex virus. Virulence. 2021;12(1):2670–702. https://dx.doi.org/10.1080/21505594.2021.1982373
  6. James C., Harfouche M., Welton N.J., et al. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bull World Health Organ. 2020;98(5):315–29. https://dx.doi.org/10.2471/BLT.19.237149
  7. Краснова Е.И., Ольховиков А.И., Сабитов А.У. и др. Герпетические инфекции у детей. Учебное пособие. Под ред. А.У. Сабитова. Екатеринбург, 2014. С. 114. [Krasnova E.I., Olkhovikov A.I., Sabitov A.U., et al. Herpes infections in children. A tutorial. Edited by A.U. Sabitov. Ekaterinburg, 2014. p. 114. (In Russ.)].
  8. Заплатников А.Л., Коровина Н.А., Корнева М.Ю., Чебуркин А.В. Внутриутробные инфекции: диагностика, лечение, профилактика. Медицина неотложных состояний. 2013;1(48):25–33. [Zaplatnikov A.L., Korovina N.A., Korneva M.Yu., Cheburkin A.V. Intrauterine infections: diagnosis, treatment, prevention. Emergency Medicine. 2013;1(48):25–33. (In Russ.)].
  9. Pinninti S.G., Kimberlin D.W. Maternal and neonatal herpes simplex virus infections. Am J Perinatol. 2013;30(2):113–9. https://dx.doi.org/10.1055/s-0032-1332802
  10. Whitley R., Baines J. Clinical management of herpes simplex virus infections: past, present, and future. F1000Res. 2018;7:F1000 Faculty Rev-1726. https://dx.doi.org/10.12688/f1000research.16157.1
  11. Kabani N., Kimberlin D.W: Neonatal Herpes Simplex Virus Infection. NeoReviews. 2018;19(2):e89–96. https://dx.doi.org/10.1542/neo.19-2-e89
  12. Ramchandani M., Kong M., Tronstein E., et al. Herpes Simplex Virus Type 1 Shedding in Tears and Nasal and Oral Mucosa of Healthy Adults. Sex Transm Dis. 2016;43(12):756–60. https://dx.doi.org/10.1097/OLQ.0000000000000522
  13. Wald A. Herpes. Transmission and viral shedding. Dermatol Clin. 1998;16(4):795–7, xiv. https://dx.doi.org/10.1016/s0733-8635(05)70049-8
  14. Ayoub H.H., Chemaitelly H., Abu-Raddad L.J. Characterizing the transitioning epidemiology of herpes simplex virus type 1 in the USA: model-based predictions. BMC Med. 2019;17(1):57. https://dx.doi.org/10.1186/s12916-019-1285-x
  15. Bernstein D.I., Bellamy A.R., Hook E.W., et al. Epidemiology, clinical presentation, and antibody response to primary infection with herpes simplex virus type 1 and type 2 in young women. Clin Infect Dis. 2013;56(3):344–51. https://dx.doi.org/10.1093/cid/cis891
  16. Johnston C., Wald A. Genital Herpes. JAMA. 2024;332(10):835–6. https://dx.doi.org/10.1001/jama.2024.12743
  17. Xu F., Lee F.K., Morrow R.A., et al. Seroprevalence of herpes simplex virus type 1 in children in the United States. J Pediatr. 2007;151(4):374–7. https://dx.doi.org/10.1016/j.jpeds.2007.04.065
  18. Chemaitelly H., Nagelkerke N., Omori R., Abu-Raddad L.J. Characterizing herpes simplex virus type 1 and type 2 seroprevalence declines and epidemiological association in the United States. PLoS One. 2019;14(6):e0214151. https://dx.doi.org/10.1371/journal.pone.0214151
  19. Kramer M.A., Uitenbroek D.G., Ujcic-Voortman J.K., et al. Ethnic differences in HSV1 and HSV2 seroprevalence in Amsterdam, the Netherlands. Euro Surveill. 2008;13(24):18904
  20. Wutzler P., Doerr H.W., Färber I., et al. Seroprevalence of herpes simplex virus type 1 and type 2 in selected German populations-relevance for the incidence of genital herpes. J Med Virol. 2000;61(2):201–7. https://dx.doi.org/10.1002/(sici)1096-9071(200006)61:2<201::aid-jmv5>3.0.co;2-p
  21. Ageeb R.A., Harfouche M., Chemaitelly H., Abu-Raddad L.J. Epidemiology of herpes simplex virus type 1 in the United States: Systematic review, meta-analyses, and meta-regressions. iScience. 2024;27(9):110652. https://dx.doi.org/10.1016/j.isci.2024.110652
  22. AlMukdad S., Harfouche M., Farooqui U.S., et al. Epidemiology of herpes simplex virus type 1 and genital herpes in Australia and New Zealand: systematic review, meta-analyses and meta-regressions. Epidemiol Infect. 2023;151:e33. https://dx.doi.org/10.1017/S0950268823000183
  23. Боковой А.Г., Егоров А.И. Герпесвирусные инфекции у детей и родителей: Учебное пособие для студентов, врачей-педиатров, инфекционистов, иммунологов. М., 2014. [Bokovoy A.G., Egorov A.I. Herpesvirus infections in children and parents: A textbook for students, pediatricians, infectious disease specialists, and immunologists. Moscow, 2014. (In Russ.)].
  24. Cunningham A.L., Diefenbach R.J., Miranda-Saksena M., et al. The cycle of human herpes simplex virus infection: virus transport and immune control. J Infect Dis. 2006;194(Suppl. 1):S11–8. https://dx.doi.org/10.1086/505359
  25. Зуйкова И.Н., Шульженко А.Е., Щубелко Р.В. Коррекция цитокиновых нарушений у пациентов с хронической рецидивирующей герпесвирусной инфекцией. Фарматека. 2014;10:48–54. [Zuikova I.N., Shulzhenko A.E., Shchubelko R.V. Correction of cytokine disorders in patients with chronic recurrent herpesvirus infection. Pharmateca. 2014;10:48–54. (In Russ.)].
  26. Исаков В.А., Архипова Е.И., Исаков Д.В. Герпесвирусные инфекции человека: руководство для врачей. 2-е изд., перераб. и дополн. СПб., 2013. [Isakov V.A., Arkhipova E.I., Isakov D.V. Human herpesvirus infections: a guide for physicians. 2nd ed., revised and supplemented. St. Petersburg, 2013. (In Russ.)].
  27. Марданлы С.Г., Симонова Е.Г., Симонов В.В. Герпесвирусные инфекции: этиология и патогенез, клиника и лабораторная диагностика, эпидемиология и профилактика. Орехово-Зуево, 2020. [Mardanly S.G., Simonova E.G., Simonov V.V. Herpesvirus infections: etiology and pathogenesis, clinical presentation and laboratory diagnostics, epidemiology and prevention. Orekhovo-Zuyevo, 2020. (In Russ.)].
  28. Руженцова Т.А. Гастроэнтерологические маски сердечно-сосудистой патологии. Экспериментальная и клиническая гастроэнтерология. 2016;130(6):114–7. [Ruzhentsova T.A. Gastroenterological masks of cardiovascular pathology. Experimental and Clinical Gastroenterology. 2016;130(6):114–7. (In Russ.)].
  29. Zhang J., Liu H., Wei B. Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection. J Zhejiang Univ Sci B. 2017;18(4):277–88. https://dx.doi.org/10.1631/jzus.B1600460
  30. Melchjorsen J., Matikainen S., Paludan S.R. Activation and evasion of innate antiviral immunity by herpes simplex virus. Viruses. 2009;1(3):737–59. https://dx.doi.org/10.3390/v1030737
  31. Koyanagi N., Kawaguchi Y. Evasion of the Cell-Mediated Immune Response by Alphaherpesviruses. Viruses. 2020;12(12):1354. https://dx.doi.org/10.3390/v12121354
  32. Neumann J., Eis-Hübinger A.M., Koch N. Herpes simplex virus type 1 targets the MHC class II processing pathway for immune evasion. J Immunol. 2003;171(6):3075–83. https://dx.doi.org/10.4049/jimmunol.171.6.3075
  33. Trgovcich J., Johnson D., Roizman B. Cell surface major histocompatibility complex class II proteins are regulated by the products of the gamma(1)34.5 and U(L)41 genes of herpes simplex virus 1. J Virol. 2002;76(14):6974–86. https://dx.doi.org/10.1128/jvi.76.14.6974-6986.2002.4
  34. Aubert M., Yoon M., Sloan D.D., et al. The virological synapse facilitates herpes simplex virus entry into T cells. J Virol, 2009;83:6171–83. https://dx.doi.org/10.1128/JVI.02163-08
  35. Sloan D.D., Jerome K.R. Herpes simplex virus remodels T-cell receptor signaling, resulting in p38-dependent selective synthesis of interleukin-10. J Virol. 2007;81:12504–14. https://dx.doi.org/10.1128/JVI.01111-07
  36. Bosnjak L., Sahlström P., Paquin-Proulx D., et al. Contact-dependent interference with invariant NKT cell activation by herpes simplex virus-infected cells. J Immunol, 2012;188:6216–24. https://dx.doi.org/10.4049/jimmunol.1100218
  37. Howson L.J., Salio M., Cerundolo V. MR1-Restricted Mucosal-Associated Invariant T Cells and Their Activation during Infectious Diseases. Front Immunol. 2015;6:303. https://dx.doi.org/10.3389/fimmu.2015.00303
  38. Corbett A.J., Eckle S.B.G., Birkinshaw R.W., et al. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature. 2014;509:361–5. https://dx.doi.org/10.1038/nature13160
  39. Hinks T.S.C., Marchi E., Jabeen M., et al. Activation and in vivo evolution of the MAIT cell transcriptome in mice and humans reveals tissue repair functionality. Cell Rep. 2019;28:3249–62. https://dx.doi.org/10.1016/j.celrep.2019.07.039
  40. Sattler A., Dang-Heine C., Reinke P., Babel N. IL-15 dependent induction of IL-18 secretion as a feedback mechanism controlling human MAIT-cell effector functions. Eur J Immunol, 2015;45:2286–98. https://dx.doi.org/10.1002/eji.201445313
  41. Lamichhane R., Schneider M., de la Harpe S.M., et al. TCR- or cytokine-activated CD8+ mucosal-associated invariant T cells are rapid polyfunctional effectors that can coordinate immune responses. Cell Rep. 2019;28:3061–76. https://dx.doi.org/10.1016/j.celrep.2019.08.054
  42. Muller W.J., Zheng X.T. Laboratory diagnosis of neonatal herpes simplex virus infections. J Clin Microbiol, 2019;57:e01460–18. https://dx.doi.org/10.1128/JCM.01460-18
  43. Samies N.L., James S.H., Kimberlin D.W. Neonatal herpes simplex virus disease: updates and continued challenges. Clin Perinatol. 2021;48:263–74. https://dx.doi.org/10.1016/j.clp.2021.03.003
  44. Kimberlin D.W., Barnett E.D., Lynfield R., Sawer M.H. Herpes simplex. 2021. P. 407–17. In Redbook: 2021–2024. Report of the committee on infectious diseases, 32nd ed. American Academy of Pediatrics, Itasca, IL.
  45. Белозеров Е.С., Буланьков Ю.И., Митин Ю.А. Инфекционные болезни в прошлом, настоящем и будущем. Медлайн-экспресс. 2003;10:31–8. [Belozerov E.S., Bulankov Yu.I., Mitin Yu.A. Infectious diseases in the past, present and future. Medline-express. 2003;10:31–8. (In Russ.)].
  46. Калугина М.Ю., Каражас Н.В., Козина В.И. и др. Герпетические инфекции у больных с иммунодефицитным состоянием. Журнал микробиологии, эпидемиологии и иммунобиологии. 2009;1:79–80. [Kalugina M.Yu., Karazhas N.V., Kozina V.I., et al. Herpetic infections in patients with immunodeficiency. Journal of Microbiology, Epidemiology and Immunobiology. 2009;1:79–80. (In Russ.)].
  47. Елисеева М.Ю., Мынбаев О.А. Роль вспомогательной иммунотерапии в решении проблем ВПЧ-ассоциированных патологических поражений кожи и слизистых оболочек. Акушерство и гинекология. 2011;4:104–11. [Eliseeva M.Yu., Mynbaev O.A. The role of adjuvant immunotherapy in solving the problems of HPV-associated pathological lesions of the skin and mucous membranes. Obstetrics and Gynecology. 2011;4:104–11 (In Russ.)].
  48. Левина А.С., Бабаченко И.В. Клинические рекомендации (протокол лечения) оказания медицинской помощи детям, больным инфекцией, вызванной вирусом простого герпеса. 2015. Levina A.S., Babachenko I.V. Clinical guidelines (treatment protocol) for providing medical care to children with infection caused by the herpes simplex virus. 2015. (In Russ.)]. URL: https://library.mededtech.ru/rest/documents/c7f42ef3-6539-47b4-a105-a5ed1516c51c/ (дата обращeния/date of access: 01.11.2025).
  49. Sliva J., Pantzartzi C.N., Votava M. Inosine Pranobex: A Key Player in the Game Against a Wide Range of Viral Infections and Non-Infectious Diseases. Adv Ther. 2019;36(8):1878–905. https://dx.doi.org/10.1007/s12325-019-00995-6
  50. Lasek W., Janyst M., Wolny R., et al. Immunomodulatory effects of inosine pranobex on cytokine production by human lymphocytes. Acta Pharm. 2015;65(2):171–80. https://dx.doi.org/10.1515/acph-2015-0015
  51. Milano S., Dieli M., Millott S., et al. Effect of isoprinosine on IL-2, IFN-gamma and IL-4 production in vivo and in vitro. Int J Immunopharmacol. 1991;13(7):1013–8. https://dx.doi.org/10.1016/0192-0561(91)90055-c
  52. Janíčková O., Ančicová L., Briestenská K., Mistríková J. The effect of Isoprinosine treatment on persistent infection of Balb/c mice infected with murine gammaherpesvirus 68. Acta Virol. 2017;61(1):32–8. https://dx.doi.org/10.4149/av_2017_01_32
  53. Petrova M., Jelev D., Ivanova A., Krastev Z. Isoprinosine affects serum cytokine levels in healthy adults. J Interferon Cytokine Res. 2010;30(4):223–8. https://dx.doi.org/10.1089/jir.2009.0057
  54. Rumel A.S., Newman A.S., O’Daly J., et al. Inosine Acedoben Dimepranol promotes an early and sustained increase in the natural killer cell component of circulating lymphocytes: A clinical trial supporting anti-viral indications. Int Immunopharmacol. 2017;42:108–14. https://dx.doi.org/10.1016/j.intimp.2016.11.023
  55. Романцова А.А. Опыт применения изопринозина у пациентов с персистирующей герпесвирусной инфекцией. Мир вирусных гепатитов. 2013;1. [Romantsova A.A. Experience with the use of isoprinosine in patients with persistent herpesvirus infection. The World of Viral Hepatitis. 2013;1. (In Russ.)].
  56. You Y., Wang L., Li Y., et al. Multicenter randomized study of inosine pranobex versus acyclovir in the treatment of recurrent herpes labialis and recurrent herpes genitalis in Chinese patients. J Dermatol. 2015;42(6):596–601. https://dx.doi.org/10.1111/1346-8138.12845
  57. Савенкова М.С., Балакирева Г.М., Кузнецова Е.С. и др. Опыт лечения препаратом Гроприносин (инозином пранобексом) герпес-вирусных инфекций у детей с эпилепсией и детским церебральным параличом. Педиатрия. Consilium Medicum. 2019;4:51–7. [Savenkova M.S., Balakireva G.M., Kuznetsova E.S., et al. Experience with Groprinosin (inosine pranobex) treatment of herpes virus infections in children with epilepsy and cerebral palsy. Pediatrics. Consilium Medicum. 2019;4:51–7. (In Russ.)]. https://dx.doi.org/10.26442/26586630.2019.4.190750
  58. Клиничeскиe рeкомeндации Министeрства здравоохранeния Российской Фeдeрации. Грипп. Дети. 2025. Министeрство здравоохранeния Российской Фeдeрации: официальный сайт. [Clinical guidelines of the Ministry of Health of the Russian Federation. Influenza. Children. 2025. Ministry of Health of the Russian Federation: official website. (In Russ.)]. URL: https://cr.minzdrav.gov.ru/view-cr/249_2 (дата обращeния/ date of access: 17.09.2025).
  59. Masihi K.N. Immunomodulatory agents for prophylaxis and therapy of infections. Int J Antimicrob Agents. 2000;14:3:181–91.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).