Main trends in the use of artificial intelligence in the financial sector

Cover Page

Cite item

Full Text

Abstract

This article is devoted to researching the current applications of artificial intelligence in the financial sector. The study examines the basic concepts and elements of artificial intelligence technology, identifies the main areas of its application in the financial sector, and reveals new opportunities and risks associated with the introduction of artificial intelligence. The study found that the introduction of artificial intelligence allows for the automation of business processes, the optimization of resource and time use, the execution of routine processes, and the solution of complex tasks through big data analysis and pattern recognition. The main areas of application of artificial intelligence in the financial sector are: payments, financial intermediation, insurance, and asset management. In these areas, the use of artificial intelligence improves the efficiency of financial services by reducing the costs of internal transaction processing, regulatory compliance, fraud detection, and customer service. At the same time, the use of AI generates new sources of cyber risks and exacerbates problems of bias and discrimination in financial decision-making, which contributes to an increase in legal and operational risks.

About the authors

Dmitry A. Kochergin

Institute of Economics of the RAS

Author for correspondence.
Email: kda2001@gmail.com
ORCID iD: 0000-0002-7046-1967

 Dr. Sci. (Econ.), Assistant Professor, Chief Researcher

Russian Federation, Moscow

References

  1. Aldasoro I., Gambacorta L., Korinek A., Shreeti V., Stein M. Intelligent Financial System: How AI Is Transforming Finance // BIS Working Papers. 2024. No. 1194, June. https://www.bis.org/publ/work1194.pdf (accessed: 10.08.2025).
  2. Aldasoro I., Armantier O., Doerr S., Gambacorta L., Oliviero T. Survey Evidence on Gen AI and Households: Job Prospects Amid Trust Concerns // BIS Bulletin. 2024. No. 86, April. https://www.bis.org/publ/bisbull86.pdf (accessed: 10.08.2025).
  3. Bank for International Settlements (BIS). Artificial Intelligence and the Economy: Implications for Central Banks // Annual Economic Report. 2024. June. Рp. 91–127. http://www.bis.org/publ/arpdf/ar2024e3.pdf (accessed: 10.08.2025).
  4. Basel Committee on Banking Supervision (BCBS). Digitalisation of Finance. 2024. May. https://www.bis.org/bcbs/publ/d575.pdf (accessed: 10.08.2025).
  5. Bell S.A., KorinekA. AI’s Economic Peril // Journal of Democracy. 2023. Vol. 34. No. 4. Рp. 151–161.
  6. Board of Governors of the Federal Reserve System (BGoFRS). Money and Payments: The U.S. Dollar in the Age of Digital Transformation. 2022. January. https://www.federalreserve.gov/publications/files/money-and-payments-20220120.pdf (accessed: 10.08.2025).
  7. Borchert L., De Haas R., Kirschenmann K., Schultz A. Broken Relationships: De-risking by Correspondent Banks and International Trade // EBRD Working Papers. 2023. No. 285. December.
  8. Boyd D., Crawford K. Critical Questions for Big Data // Information, Communication & Society. 2012. Vol. 15. No. 5. Рp. 662–79. doi: 10.1080/1369118X.2012.678878.
  9. Browning J., LeCun Y. AI and the Limits of Language // Noema. 2022. 23 August.
  10. Chen S., Doerr S., Frost J., Gambacorta L., Shin H.S. The Fintech Gender Gap // Journal of Financial Intermediation. Elsevier. 2023. Vol. 54. doi: 10.1016/j.jfi.2023.101026.
  11. Committee on Payments and Market Infrastructures (CPMI). CPMI Quantitative Review of Correspondent Banking Data, 2023. May. https://www.bis.org/cpmi/paysysinfo/corr_bank_data.htm (accessed: 10.08.2025).
  12. Chow T., Halperin B., Mazlish J.Z. Transformative AI, Existential Risk, and Asset Pricing. Working Paper. 2023. https://www.basilhalperin.com/papers/ agi_emh.pdf (accessed: 10.08.2025).
  13. Cornelli G., Frost J., Gambacorta L., Rau R., Wardrop R., Ziegler T. Fintech and Big Tech Credit: Drivers of the Growth of Digital Lending // Journal of Banking and Finance. 2023. Vol. 148. March. doi: 10.1016/j.jbankfin.2022.106742.
  14. Di Maggio, Ratnadiwakara M.D., Carmichael D. Invisible Primes: Fintech Lending with Alternative Data // NBER Working Papers. 2023. No. 29840.
  15. Doerr S., Gambacorta L., Guiso L., Sanchez del-Villar M. Privacy regulation and fintech lending // BIS Working Papers. 2023. No. 1103. June. https://www.bis.org/publ/work1103.pdf (accessed: 10.08.2025).
  16. European Central Bank (ECB). Eurosystem Report on the Public Consultation on a Digital Euro, 2021. April. https://www.ecb.europa.eu/pub/pdf/other/ Eurosystem_report_on_the_public_consultation_on_a_digital_euro~539fa8cd8d.e.pdf (accessed: 10.08.2025).
  17. Federal Reserve Bank of New York. Survey of Consumer Expectations. 2024. https://libertystreeteconomics.newyorkfed.org/2024/10/exposure-to-generative-ai-andexpectations-about-inequality/ (accessed: 10.08.2025).
  18. Grand G., Blank I., Pereira F., Fedorenko E. Semantic Projection Recovers Rich Human Knowledge of Multiple Object Features from Word Embeddings // Nature Human Behaviour. 2022. Vol. 6. Рp. 975–987.
  19. Hitaj D., Pagnotta G., Hitaj B., Mancini L., Perez-Cruz F. MaleficNet: Hiding Malware into Deep Neural Networks Using Spread-Spectrum Channel Coding. In: V. Atluri, R.Di Pietro, C. Jensen, W. Meng (eds.). Computer security – ESORICS 2022. Springer Cham, 2022. 23 September. doi: 10.1007/978-3-031-17143-7_21.
  20. Korinek A., Stiglitz J.E. Artificial Intelligence, Globalization, and Strategies for Economic Development // NBER Working Paper. 2012. No. 28453. https://www.nber.org/system/files/working_papers/w28453/w28453.pdf (accessed: 10.08.2025).
  21. Korinek A., Vipra J. Concentrating Intelligence: Scaling Laws and Market Structure in Generative AI // Institute for New Economic Thinking Working Paper Series. 2024. No. 228. April. https://papers.ssrn.com/sol3/Delivery.cfm/5044496.pdf?abstractid=5044496&mirid=1 (accessed: 10.08.2025).
  22. McKinsey & Company. Scaling Gen AI in Banking: Choosing the Best Operating Model, 2024. March. https://www.mckinsey.com/industries/financial-services/our-insights/scaling-gen-ai-in-banking-choosing-the-best-operating-model (accessed: 10.08.2025).
  23. McKinsey & Company. The State of AI in Early 2024: Gen AI Adoption Spikes and Starts to Generate Value, 2024. May. https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-2024 (accessed: 10.08.2025).
  24. Noy S., Zhang W. Experimental Evidence on the Productivity Effects of Generative Artificial Intelligence // Science. 2023. 381 (6654). Pp. 187–192. doi: 10.2139/ssrn.4375283.
  25. Organisation for Economic Co-operation and Development (OECD). Generative Artificial Intelligence in Finance // OECD Artificial Intelligence Papers. 2023. No. 9. December. https://www.oecd.org/content/dam/oecd/en/publications/reports/2023/12/generative-artificial-intelligence-in-finance_37bb17c6/ac7149cc-en.pdf (accessed: 10.08.2025).
  26. Park T., Shin H.S., Williams H. Mapping the Space of Economic Ideas with LLMs // BIS Working Papers, 2024.
  27. People’s Bank of China (PBoC). Progress of Research & Development of E-CNY in China, 2021. July. http://www.pbc.gov.cn/en/3688110/3688172/4157443/4293696/2021072014364791207.pdf (accessed: 10.08.2025).
  28. Perez-Cruz F., Shin H.S. Testing the Cognitive Limits of Large Language Models // BIS Bulletin, 2024. No. 83, January. https://www.bis.org/publ/bisbull83.pdf (accessed: 10.08.2025).
  29. Rice T., G. von Peter, Boar C. On the Global Retreat of Correspondent Banks // BIS Quarterly Review. 2020. March. Pp. 37–52. https://www.bis.org/publ/qtrpdf/ r_qt2003g.pdf (accessed: 10.08.2025).
  30. Rosenblatt F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain // Psychological Review. 1958. Vol. 65. No. 6. Pp. 386–408. doi: 10.1037/h0042519.
  31. Russell S., Norvig P. Artificial Intelligence: A Modern Approach. Pearson, 4th Edition, 2021.
  32. Turing A.M. Computing Machinery and Intelligence // Mind. 1950. October. Vol. LIX. Issue 236. Pp. 433–460. doi: 10.1093/mind/LIX.236.433.
  33. Turing A.M. On Computable Numbers, with an Application to the Entscheidungsproblem // Proceedings of the London Mathematical Society. 1936. Series 2. Vol. 42. Pp. 230–265.
  34. Zhu L., Wu H., Wells M. News-Based Sparse Machine Learning Models for Adaptive Asset Pricing // Data Science in Science. 2023. Vol. 2. No. 1.
  35. United States Government Accountability Office (GAO). Artificial Intelligence: Use and Oversight in Financial Services. Report to Congressional Committees, 2025. May. https://www.gao.gov/assets/gao-25-107197.pdf (accessed: 10.08.2025).
  36. White House. Strengthening American Leadership in Digital Financial Technology. Executive Order 14178. 23.01.25. https://www.whitehouse.gov/presidentialactions/2025/01/strengthening-american-leadership-in-digital-financial-technology/ (accessed: 10.08.2025).

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).