Hydraulic mass reduction method
- 作者: Krivosheev N.S.1, Musienko M.M.2, Zharkovsky A.A.2
-
隶属关系:
- GS Unit
- Peter the Great St. Petersburg Polytechnic University
- 期: 卷 19, 编号 2 (2025)
- 页面: 23-32
- 栏目: Hydraulic and pneumatic systems
- URL: https://journal-vniispk.ru/2074-0530/article/view/356870
- DOI: https://doi.org/10.17816/2074-0530-685142
- EDN: https://elibrary.ru/ZOYELA
- ID: 356870
如何引用文章
全文:
详细
BACKGROUND: This paper considers the prospects for reducing the weight of hydraulic drives by modifying the design and manufacturing technology of the actuator—the hydraulic cylinder. Feasibility of changing the hydraulic cylinder material to a composite, which offers a low manufacturing cost, is assumed.
AIM: Studying the methods for reducing the mass of hydraulic drives, which is crucial for enhancing the efficiency and cost-effectiveness of various systems. The paper presents an innovative approach to weight reduction of a hydraulic drive through modifications in the design and production technology of its actuator, specifically the hydraulic cylinder.
METHODS: Modern data analysis methods and mathematical modeling are used for successful implementation of this approach.
RESULTS: By altering the design and manufacturing technology of the actuator—the hydraulic cylinder—the method allows leveraging composite materials that not only have less weight but reduce production costs significantly as well.
CONCLUSION: The focus is on changing the design and production technology of the hydraulic drive’s actuator—the hydraulic cylinder. The proposal to replace conventional cylinder materials with composites is a promising solution, as these materials offer low production costs and high strength. This not only reduces weight of the system but maintains its reliability and durability as well. Thus, introducing composite materials into the production of hydraulic cylinders appears to be a reasonable step towards development of lighter and more economical hydraulic systems.
作者简介
Nikita Krivosheev
GS Unit
编辑信件的主要联系方式.
Email: ax@hydraulicunit.ru
ORCID iD: 0009-0009-1754-4315
SPIN 代码: 3147-5597
Production and science director
俄罗斯联邦, Saint PetersburgMatvey Musienko
Peter the Great St. Petersburg Polytechnic University
Email: matvey.polesie@gmail.com
ORCID iD: 0009-0001-5793-060X
SPIN 代码: 3931-9246
Student of the Higher School of Power Engineering
俄罗斯联邦, Saint PetersburgAleksandr Zharkovsky
Peter the Great St. Petersburg Polytechnic University
Email: azharkovsky@gmail.com
ORCID iD: 0000-0002-3044-8768
SPIN 代码: 3637-7853
Dr. Sci. (Engineering), professor, Professor of the Higher School of Power Engineering
俄罗斯联邦, Saint Petersburg参考
- Amanollahi A, Ebrahimzadeh I, Raeissi M, et al. Laminated steel/aluminum composites: Improvement of mechanical properties by annealing treatment. Materials Today Communications. 2021;29:102866. doi: 10.1016/j.mtcomm.2021.102866 EDN: IZEIVB
- Kuzina AA. Composite Materials. Samara: Samara University; 2023. (In Russ.)
- Bataev A, Bataev VA. Composite Materials: Structure, Production, Application. Moscow: Universitetskaya kniga, Logos; 2006. (In Russ.)
- Sun S, Pugh M. Fabrication and mechanical properties of steel–steel composites. Materials Science and Engineering: A. 2001;300(1-2):135–141. doi: 10.1016/S0921-5093(00)01657-9 EDN: YITFGI
- Rohem NRF, Pacheco L, Budhe S, et al. Development and qualification of a new polymeric matrix laminated composite for pipe repair. Composite Structures. 2016;152:737–745. doi: 10.1016/j.compstruct.2016.05.091
- Vendra L, Neville B, Rabiei A. Fatigue in aluminum–steel and steel–steel composite foams. Materials Science and Engineering: A. 2009;517(1-2):146–153. doi: 10.1016/j.msea.2009.03.075
- Chen ZJ, Liu Q, Wang G, et al. Deformation inhomogeneities of Mg–Al laminated metal composites fabricated by accumulative roll bonding. Materials Research Innovations. 2015;19(sup4):S147–S151. doi: 10.1179/1432891715Z.0000000001533
- Kochkina GV, Krushenko GG. Strength calculation of aluminum composite fibers. Current Issues in Aviation and Cosmonautics. 2013;1(9):113–114. (In Russ.) EDN: TAPSEN
- Kuis DV, Volochko AT, Shegidevich AA, et al. Aluminum composite reinforced with quasicrystalline particles Al-Cu-Fe. Proceedings of BSTU Forestry and Wood Industry. 2015;2(175):229–233. (In Russ.) EDN: WMSIFJ
- Bataev IA, Bataev AA, Mali VI, Pavliukova DV. Structural and mechanical properties of metallic-intermetallic laminate composite produced by explosive welding and annealing. Material and Design. 2012(35):225–234. (In Russ.) doi: 10.1016/j.matdes.2011.09.030 EDN: AYVYNW
- Kolosova AS, Sokolskaya MK, Vitkalova IA, et al. Modern polymer composite materials and their applications. International Journal of Applied and Fundamental Research. 2018;(5-1):245–256. (In Russ.) EDN: OZTDRV
- Bakholdin DG. Application of composite materials in construction. International Journal of Humanities and Natural Sciences. 2024;(5-1(92)): 189–192. (In Russ.) doi: 10.24412/2500-1000-2024-5-1-189-192 EDN: AVSWVS
- Lebedeva OV, Sipkina EI. Polymer composites and their properties. Proceedings of Universities: Applied Chemistry and Biotechnology. 2022;12(2(41)):192–207. (In Russ.) doi: 10.21285/2227-2925-2022-12-2-192-207 EDN: BSBTTQ
- Kachanov IV, Lenkevich SA, Vlasov VV, et al. Features of developing technologies for producing bimetallic semi-finished products for tool purposes by high-speed hot extrusion. Science and Technology. 2025;24(3):192–203 (In Russ.) doi: 10.21122/2227-1031-2025-24-3-192-203 EDN: GPEGJU
- Meleshin MA, Ali S, Mazen A. Experience in the application of composite materials in shipbuilding. Bulletin of Astrakhan State Technical University: Marine Equipment and Technology Series. 2022;2:44–50. (In Russ.) doi: 10.24143/2073-1574-2022-2-44-50 EDN: UXSRLV
- Kustov AV, Rozhkova E A, Bordachev VA. Composite materials in the rocket and space industry. In: Science, Technology, Society – NTO-II-2022. Krasnoyarsk: Obshchestvennoe uchrezhdenie “Krasnoyarskiy kraevoy Dom nauki i tekhniki Rossiyskogo soyuza nauchnykh i inzhenernykh obshchestvennykh obedineniy”; 2022:101–109. (In Russ.) EDN: NHSHXS
- Alekseev SV, Ogurtsov GL, Trifonova AA, et al. Comparison of characteristics of composite materials used in bridge support structures. In: Science Week ISI Proceedings. Saint Petersburg: SPbPU; 2021:237–239. (In Russ.) EDN: FMIVOK
- Polilov AN, Tatus’ N.A. Biomimetics in the design of constructions from fibrous composites. XXXII International Innovative Conference for Young Scientists and Students on Machine Science Issues. 2021:17–23. (In Russ.) EDN: TTZNZK
- Bezkorovainyi PG, Shestakov VS. Determining optimal parameters for hydraulic excavator working equipment with a pressure link. Proceedings of Higher Education Institutions: Mining Journal. 2023;1:25–35. doi: 10.21440/0536-1028-2023-1-25-35 (In Russ.) EDN: HMXSFD
- Gladkovsky SV, Trunina TA, Kokovikhin EA, Smirnova (Kutenyeva) SV. Technology for obtaining and properties of layered steel-aluminum composites. Rolling Production Journal. 2011(12):25–29. (In Russ.) EDN: PBQSYP
- Gladkovsky SV, Trunina TA, Kokovikhin EA, et al., Structure and properties of boron-aluminum composites obtained by hot rolling. Proceedings of the Samara Scientific Center of the Russian Academy of Sciences. 2011;13(1-2):361–364. (In Russ.) EDN: OORVIZ








