Применение закона сохранения момента импульса при анализе переключений в автоматических коробках передач
- Авторы: Саламандра К.Б1, Тывес Л.И1
-
Учреждения:
- Институт машиноведения им. А.А. Благонравова РАН (ИМАШ РАН)
- Выпуск: Том 10, № 3 (2016)
- Страницы: 80-88
- Раздел: Статьи
- URL: https://journal-vniispk.ru/2074-0530/article/view/66940
- DOI: https://doi.org/10.17816/2074-0530-66940
- ID: 66940
Цитировать
Полный текст
Аннотация
Решение задач динамики механизмов базируется либо на дифференциальных принципах теоретической механики, либо на интегральных. Первые предполагают составление уравнений динамики Лагранжа, характеризующих состояние механизма в каждый момент времени, и анализ их решений. Вторые связаны с законами сохранения (законом сохранения энергии, законом сохранения импульса) и позволяют сделать интегральную оценку результатов движений за какой-либо интервал. Дифференциальный принцип, применяемый для анализа динамических процессов переключений в коробках передач транспортных средств, полностью оправдан при анализе переключений в коробках с ручным управлением. В этом случае процесс переключения длится секунды и все фазы процесса математически корректно описываются. Применение этого подхода при анализе динамики переключений в автоматических коробках передач, длящихся 0,2…0,5 с, связано с привлечением большого числа предположений. Они касаются описания предполагаемых взаимодействий включаемых и выключаемых элементов управления коробкой передач и проводятся на довольно простой модели двухступенчатой коробки передач. При анализе более сложных моделей, например, коробки передач с двойным переключением (2 муфты выключаются, 2 включаются) применение дифференциального принципа существенно затруднено. Уменьшение (или увеличение) скоростей инерционных элементов трансмиссии при переключении передач за короткое время возможно лишь при действии на включаемую муфту больших сил. Поэтому, рассматривая модель автоматической коробки передач на малом интервале времени как замкнутую систему, можно применить теорему сохранения момента импульса. С использованием этого интегрального принципа в статье приводится расчет скоростей на входе и выходе коробки передач после переключения, оценка предельного момента, действующего на звенья передач при переключении, предложен критерий подбора муфты, соответствующей требуемым параметрам переключения, а также решается задача управления процессом двойного переключения передач. Примененный подход дополняет известные методы исследований и позволяет существенно упростить расчеты динамических нагрузок.
Полный текст
Открыть статью на сайте журналаОб авторах
К. Б Саламандра
Институт машиноведения им. А.А. Благонравова РАН (ИМАШ РАН)
Email: ksalamandra@yandex.ru
к.т.н.
Л. И Тывес
Институт машиноведения им. А.А. Благонравова РАН (ИМАШ РАН)к.т.н.
Список литературы
- Бухгольц Н.Н. Основной курс теоретической механики. Часть 2: Динамика системы материальных точек. М.-Л.: ОНТИ НКТП СССР, 1937. 224 с.
- Шарипов В.М., Дмитриев М.И., Шевелев А.С. Переключение передач с различной степенью их перекрытия в коробках передач автомобилей и тракторов // Евразийское Научное Объединение. 2015. Т. 1. № 6 (6). С. 67-70.
- Шарипов В.М, Дмитриев М.И., Зенин А.С. и др. К вопросу о буксовании фрикционных сцеплений при переключении передач без разрыва потока мощности в коробках передач автомобилей и тракторов // Тракторы и сельхозмашины. 2015. №6. С. 5-9.
- Шарипов В.М., Дмитриев М.И., Зенин А.С. и др. Определение параметров буксования фрикционных муфт для различных вариантов их установки в тракторных коробках передач при переключении передач без разрыва потока мощности // Известия МГТУ «МАМИ». 2013. Т. 1. № 1(15). С. 242-248.
- Sharipov V., Dmitriev M. Definition of Slippage Parameters of Friction Clutches for Different Installation Versions in Tractor Gearboxes// SAE Technical Paper 2013-01-2894, 2013. doi: 10.4271/2013-01-2894.
- Pfeiffer F. Mechanical System Dynamics. Corrected Second Printing. - Springer-Verlag Berlin Heidelberg, 2008.
- Fischer, R., Küçükay, F., Jürgens, G., Najork, R., Pollak, B. The Automotive Transmission Book. - Springer International Publishing, 2015.
- Naunheimer H., Bertsche B., Ryborz J., Novak W. Automotive Transmissions. Fundamentals, Selection, Design and Application. Second Edition. - Springer-Verlag Berlin Heidelberg 1994, 2011.
- Басалаев В.Н., Коваленко А.В. Исследование процесса переключения передач под нагрузкой и оптимизация управления фрикционными муфтами механической трансмиссии // Механика машин, механизмов и материалов. 2011. № 2 (15). С. 24-32.
- Шарипов В.М., Дмитриев М.И., Зенин А.С., Савкин Я.В. Работа сцепления в коробке передач при переключении без разрыва потока мощности от двигателя // Справочник. Инженерный журнал с приложением. 2010. № 11. С. 8-15.
- Bai Sh., Maguire J., Peng H. Dynamic analysis and control system design of automatic transmission. - SAE International, Warrendale, Pennsylvania, USA, 2013.
- Саламандра К.Б., Тывес Л.И. Динамическое гашение колебаний выходного вала коробки передач автомобиля с двигателем внутреннего сгорания // Проблемы машиностроения и надежности машин. 2014. № 5. С. 12-20.
- Саламандра Б.Л., Саламандра К.Б. Коробка передач. Патент России № 2531995. Опубликовано 27.10.2014. Бюл. № 30.
- Лойцянский Л.Г., Лурье А.И. Курс теоретической механики: В 2-х томах. Т. II. Динамика. М.: Наука, Главная редакция физико-математической литературы, 1983. 640 с.
- Шарипов В.М., Коломиец С.Н. Работа буксования фрикционной муфты сцепления // Вестник машиностроения. 1987. № 7. С. 31-33.
- Львовский К.Я., Черпак Ф.А., Серебряков И.Н., Щельцын Н.А. Трансмиссии тракторов. М.: Машиностроение, 1976. 280 с.
- Шарипов В.М. Конструирование и расчет тракторов. М.: Машиностроение, 2009. 752 с.
- Шарипов В.М., Городецкий К.И., Дмитриев М.И. и др. Математическая модель процесса переключения передач в коробке передач трактора с помощью фрикционных муфт // Известия МГТУ «МАМИ». 2012. № 1(13). С. 112-122.
- Шарипов В.М., Дмитриев М.И., Зенин А.С. Математическая модель процесса переключения передач в коробке передач трактора // Наука и образование: научное издание МГТУ им. Н.Э. Баумана. 2014. № 5. С. 50-69. doi: 10.7463/0514.0711329.
Дополнительные файлы

