Catestanin – a promising biological marker for heart failure: A review
- Authors: Alieva A.M.1, Teplova N.V.1, Reznik E.V.1,2, Ettinger O.A.1, Faradzhov R.A.1, Khachirova E.A.1, Kovtiukh I.V.1,3, Kotikova I.A.1, Sysoeva D.A.1, Bigushev I.R.1, Nikitin I.G.1
-
Affiliations:
- Pirogov Russian National Research Medical University
- City Clinical Hospital №31
- Scientific Clinical Center №2 of Petrovsky Russian Scientific Center of Surgery
- Issue: Vol 24, No 10 (2022)
- Pages: 726-731
- Section: Articles
- URL: https://journal-vniispk.ru/2075-1753/article/view/120382
- DOI: https://doi.org/10.26442/20751753.2022.10.201873
- ID: 120382
Cite item
Full Text
Abstract
The epidemic of heart failure (HF) is one of the problems that the global health system has been facing for decades. HF is a multicomponent clinical syndrome caused by dysfunction of the heart and its pathological remodeling. In addition to the well-known natriuretic peptides, a number of cardiovascular biological markers have now been identified that provide clinicians with additional opportunities in diagnosing, classifying, predicting, and monitoring the effectiveness of treating patients with HF. From the position of establishing the sympathetic load in patients with HF, it seems very promising to assess the concentrations of catestatin. The presented data of our literature review suggest that catestatin is probably a reliable biological marker of the activity of the sympathetic division of the autonomic nervous system, and its elevated concentrations in patients with HF reflect the severity of the pathological process. However, despite the reliable results of studies, the clinical significance of assessing the values of this marker both separately and in the framework of a multimarker model requires further study in larger prospective clinical studies.
Full Text
##article.viewOnOriginalSite##About the authors
Amina M. Alieva
Pirogov Russian National Research Medical University
Author for correspondence.
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579
SPIN-code: 2749-6427
Cand. Sci. (Med.), Pirogov Russian National Research Medical University
Russian Federation, MoscowNatalia V. Teplova
Pirogov Russian National Research Medical University
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0002-7181-4680
D. Sci. (Med.), Prof., Pirogov Russian National Research Medical University
Russian Federation, MoscowElena V. Reznik
Pirogov Russian National Research Medical University; City Clinical Hospital №31
Email: elenaresnik@gmail.com
ORCID iD: 0000-0001-7479-418X
SPIN-code: 3494-9080
ResearcherId: N-6856-2016
D. Sci. (Med.), Prof., Pirogov Russian National Research Medical University, City Clinical Hospital №31
Russian Federation, Moscow; MoscowOlga A. Ettinger
Pirogov Russian National Research Medical University
Email: olga-oett@mail.ru
ORCID iD: 0000-0002-1237-3731
Assoc. Prof. of Hospital Therapy Department, Pirogov Russian National Research Medical University
Russian Federation, MoscowRashad A. Faradzhov
Pirogov Russian National Research Medical University
Email: rash2405@icloud.com
ORCID iD: 0000-0002-5629-7275
Cand. Sci. (Med.), Pirogov Russian National Research Medical University
Russian Federation, MoscowElvira A. Khachirova
Pirogov Russian National Research Medical University
Email: Elchik09@mail.ru
ORCID iD: 0000-0003-2523-8907
Cand. Sci. (Med.), Pirogov Russian National Research Medical University
Russian Federation, MoscowIrina V. Kovtiukh
Pirogov Russian National Research Medical University; Scientific Clinical Center №2 of Petrovsky Russian Scientific Center of Surgery
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0002-9176-1889
Аssistant, Pirogov Russian National Research Medical University, Scientific Clinical Center №2 of Petrovsky Russian Scientific Center of Surgery
Russian Federation, Moscow; MoscowIrina A. Kotikova
Pirogov Russian National Research Medical University
Email: kotikova.ia@mail.ru
ORCID iD: 0000-0001-5352-8499
Student, Pirogov Russian National Research Medical University
Russian Federation, MoscowDiana A. Sysoeva
Pirogov Russian National Research Medical University
Email: da_sysoeva@mail.ru
ORCID iD: 0000-0001-9042-2271
Student, Pirogov Russian National Research Medical University
Russian Federation, MoscowIl'dar R. Bigushev
Pirogov Russian National Research Medical University
Email: ildar.bigushev@mail.ru
ORCID iD: 0000-0001-5449-4876
Student, Pirogov Russian National Research Medical University
Russian Federation, MoscowIgor G. Nikitin
Pirogov Russian National Research Medical University
Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881
D. Sci. (Med.), Prof., Pirogov Russian National Research Medical University
Russian Federation, MoscowReferences
- Piepoli M, Adamo M, Barison A, et al. Preventing heart failure: a position paper of the Heart Failure Association in collaboration with the European Association of Preventive Cardiology. Eur J Heart Fail. 2022;24(1):143-68. doi: 10.1002/ejhf.2351
- Mohananey D, Mewhort H, Shekhar S, et al. Heart Failure Trial Update-Analysis of Recent Data. J Cardiothorac Vasc Anesth. 2021;35(9):2792-800. doi: 10.1053/j.jvca.2020.09.085
- Braunwald E. Heart failure. JACC Heart Fail. US National Institutes of Health. 2013;1(1):1-20. doi: 10.1016/j.jchf.2012.10.002
- Фомин И.В. Хроническая сердечная недостаточность в Российской Федерации: что сегодня мы знаем и что должны делать. Российский кардиологический журнал. 2016;8:7-13 [Fomin IV. Chronic heart failure in Russian Federation: what do we know and what to do. Russian Journal of Cardiology. 2016;8:7-13 (in Russian)]. doi: 10.15829/1560-4071-2016-8-7-13
- Minatoguchi S. Heart failure and its treatment from the perspective of sympathetic nerve activity. J Cardiol. 2022;79(6):691-7. doi: 10.1016/j.jjcc.2021.11.016
- Li L, Hu Z, Xiong Y, Yao Y. Device-Based Sympathetic Nerve Regulation for Cardiovascular Diseases. Front Cardiovasc Med. 2021;8:803984. doi: 10.3389/fcvm.2021.803984
- Swedberg K, Viquerat C, Rouleau JL, et al. Comparison of myocardial catecholamine balance in chronic congestive heart failure and in angina pectoris without failure. Am J Cardiol. 1984;54(7):783-6. doi: 10.1016/S0002-9149(84)80208-8
- Viquerat CE, Daly P, Swedberg K, et al. Endogenous catecholamine levels in chronic heart failure. Relation to the severity of hemodynamic abnormalities. Am J Med. 1985;78(3):455-60. doi: 10.1016/0002-9343(85)90338-9
- Kaye DM, Lambert GW, Lefkovits J, et al. Neurochemical evidence of cardiac sympathetic activation and increased central nervous system norepinephrine turnover in severe congestive heart failure. J Am Coll Cardiol. 1994;23(3):570-8. doi: 10.1016/0735-1097(94)90738-2.
- Aggarwal A, Esler MD, Lambert GW, et al. Norepinephrine turnover is increased in suprabulbar subcortical brain regions and is related to whole-body sympathetic activity in human heart failure. Circulation. 2002;105(9):1031-3. doi: 10.1161/hc0902.105724
- Zucker IH, Schultz HD, Patel KP, et al. Regulation of central angiotensin type 1 receptors and sympathetic outflow in heart failure. Am J Physiol Hear Circ Physiol. 2009;297(5):H1557-66. doi: 10.1152/ajpheart.00073.2009
- Chidsey CA, Braunwald E, Morrow AG. Catecholamine excretion and cardiac stores of norepinephrine in congestive heart failure. Am J Med. 1965;39(3):442-51. doi: 10.1016/0002-9343(65)90211-1
- Katsuumi G, Shimizu I, Yoshida Y, et al. Catecholamine-induced senescence of endothelial cells and bone marrow cells promotes cardiac dysfunction in mice. Int Heart J. 2018;59(4):837-44. doi: 10.1536/ihj.17-313
- Santos JRU, Brofferio A, Viana B, Pacak K. Catecholamine-Induced Cardiomyopathy in Pheochromocytoma: How to Manage a Rare Complication in a Rare Disease? Horm Metab Res. 2019;51(7):458-69. doi: 10.1055/a-0669-9556
- Алиева А.М., Резник Е.В., Гасанова Э.Т., и др. Клиническое значение определения биомаркеров крови у больных с хронической сердечной недостаточностью. Архивъ внутренней медицины. 2018;8(5):333-45 [Aliyeva AM, Reznik EV, Hasanova ET, et al. Clinical value of blood biomarkers in patients with chronic heart failure. The Russian Archives of Internal Medicine. 2018;8(5):333-45 (in Russian)]. doi: 10.20514/2226-6704-2018-8-5-333-345
- Гаспарян А.Ж., Шлевков Н.Б., Скворцов А.А. Возможности современных биомаркеров для оценки риска развития желудочковых тахиаритмий и внезапной сердечной смерти у больных хронической сердечной недостаточностью. Кардиология. 2020;60(4):101-8 [Gasparyan AZ, Shlevkov NB, Skvortsov AA. Possibilities of modern biomarkers for assessing the risk of developing ventricular tachyarrhythmias and sudden cardiac death in patients with chronic heart failure. Kardiologiia. 2020;60(4):101-8 (in Russian)]. doi: 10.18087/cardio.2020.4.n487
- Алиева А.М., Пинчук Т.В., Алмазова И.И., и др. Клиническое значение определения биомаркера крови ST2 у больных с хронической сердечной недостаточностью. Consilium Medicum. 2021;23(6):522-6 [Alieva AM, Pinchuk TV, Almazova II, et al. Сlinical value of blood biomarker ST2 in patients with chronic heart failure. Consilium Medicum. 2021;23(6):522-6 (in Russian)]. doi: 10.26442/20751753.2021.6.200606
- Алиева А.М., Алмазова И.И., Пинчук Т.В., и др. Фракталкин и сердечно-сосудистые заболевания. Consilium Medicum. 2020;22(5):83-6 [Alieva AM, Almazova II, Pinchuk TV, et al. Fractalkin and cardiovascular disease. Consilium Medicum. 2020;22(5):83-6 (in Russian)]. doi: 10.26442/20751753.2020.5.200186
- Ларина В.Н., Лунев В.И. Значение биомаркеров в диагностике и прогнозировании сердечной недостаточности в старшем возрасте. Архивъ внутренней медицины. 2021;11(2):98-110 [Larina VN, Lunev VI. The Value of Biomarkers in the Diagnosis and Prognosis of Heart Failure in Older Age. The Russian Archives of Internal Medicine. 2021;11(2):98-110 (in Russian)]. doi: 10.20514/2226-6704-2021-11-2-98-110
- Mahata SK, O’Connor DT, Mahata M, et al. Novel autocrine feedback control of catecholamine release: A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Invest. 1997;100(6):1623-33. doi: 10.1172/JCI119686
- Mahata SK, Kiranmayi M, Mahapatra NR. Catestatin: A Master Regulator of Cardiovascular Functions. Curr Med Chem. 2018;25:1352-74. doi: 10.2174/0929867324666170425100416
- Biswas N, Rodriguez-Flores JL, Courel M, et al. Cathepsin L colocalizes with chromogranin a in chromaffin vesicles to generate active peptides. Endocrinology. 2009;150:3547-57. doi: 10.1210/en.2008-1613
- Bianco M, Gasparri AM, Colombo B, et al. Chromogranin A Is Preferentially Cleaved into Proangiogenic Peptides in the Bone Marrow of Multiple Myeloma Patients. Cancer Res. 2016;76:1781-91. doi: 10.1158/0008-5472.CAN-15-1637
- Pasqua T, Angelone T, Spena A, Cerra MC. Biological Roles of the Eclectic Chromogranin-A-derived Peptide Catestatin. Curr Med Chem. 2017;24(31):3356-72. doi: 10.2174/0929867324666170616104759
- Kraszewski S, Drabik D, Langner M, et al. A molecular dynamics study of catestatin docked on nicotinic acetylcholine receptors to identify amino acids potentially involved in the binding of chromogranin A fragments. Phys Chem Chem Phys. 2015;17(26):17454-60. doi: 10.1039/c4cp02491e
- Sahu BS, Mohan J, Sahu G, et al. Molecular interactions of the physiological anti-hypertensive peptide catestatin with the neuronal nicotinic acetylcholine receptor. J Cell Sci. 2012;125(Pt. 9):2323-37. doi: 10.1242/jcs.103176. Erratum in: J Cell Sci. 2012;125(Pt. 11):2787. Obbineni, Jagan M [corrected to Mohan, Jagan].
- Taupenot L, Mahata SK, Mahata M, et al. Interaction of the catecholamine releaseinhibitory peptide catestatin (human chromogranin A (352372)) with the chromaffin cell surface and Torpedo electroplax: Implications for nicotinic cholinergic antagonism. Regul Pept. 2000;95:9717. doi: 10.1016/S0167-0115(00)00135-X
- Bozic J, Kumric M, Ticinovic Kurir T, et al. Catestatin as a Biomarker of Cardiovascular Diseases: A Clinical Perspective. Biomedicines. 2021;9(12):1757. doi: 10.3390/biomedicines9121757
- Angelone T, Quintieri AM, Brar BK, et al. The antihypertensive chromogranin a peptide catestatin acts as a novel endocrine/paracrine modulator of cardiac inotropism and lusitropism. Endocrinology. 2008;149:4780-93. doi: 10.1210/en.2008-0318
- Zhang YM, Zhang ZY, Wang RX. Protective Mechanisms of Quercetin against Myocardial Ischemia Reperfusion Injury. Front Physiol. 2020;11:956. doi: 10.3389/fphys.2020.00956
- Mazza R, Gattuso A, Mannarino C, et al. Catestatin (chromogranin A344364) is a novel cardiosuppressive agent: Inhibition of isoproterenol and endothelin signaling in the frog heart. Am J Physiol Heart Circ Physiol. 2008;295:H113-22. doi: 10.1152/ajpheart.00172.2008
- Gaede AH, Pilowsky PM. Catestatin in rat RVLM is sympathoexcitatory, increases barosensitivity, and attenuates chemosensitivity and the somatosympathetic reflex. Am J Physiol Regul Integr Comp Physiol. 2010;299:R1538-545. doi: 10.1152/ajpregu.00335.2010
- Gaede AH, Pilowsky PM. Catestatin, a chromogranin A-derived peptide, is sympathoinhibitory and attenuates sympathetic barosensitivity and the chemoreflex in rat CVLM. Am J Physiol Regul Integr Comp Physiol. 2012;302:R365-72. doi: 10.1152/ajpregu.00409.2011
- Avolio E, Mahata SK, Mantuano E, et al. Antihypertensive and neuroprotective effects of catestatin in spontaneously hypertensive rats: Interaction with GABAergic transmission in amygdala and brainstem. Neuroscience. 2014;270:48-57. doi: 10.1016/j.neuroscience.2014.04.001
- Gayen JR, Gu Y, OConnor DT, Mahata SK. Global disturbances in autonomic function yield cardiovascular instability and hypertension in the chromogranin a null mouse. Endocrinology. 2009;150:5027-35. doi: 10.1210/en.2009-0429
- Dev NB, Gayen JR, OConnor DT, Mahata SK. Chromogranin A and the autonomic system: Decomposition of heart rate variability by time and frequency domains, along with non-linear characteristics during chromogranin A ablation, with rescue by its catestatin. Endocrinology. 2010;151:2760-68. doi: 10.1210/en.2009-1110
- Krüger PG, Mahata SK, Helle KB. Catestatin (CgA344364) stimulates rat mast cell release of histamine in a manner comparable to mastoparan and other cationic charged neuropeptides. Regul Pept. 2003;114:29-35. doi: 10.1016/S0167-0115(03)00069-7
- Fung MM, Salem RM, Mehtani P, et al. Direct vasoactive effects of the chromogranin A (CHGA) peptide catestatin in humans in vivo. Clin Exp Hypertens. 2010;32:278-87. doi: 10.3109/10641960903265246
- Zhang D, Shooshtarizadeh P, Laventie BJ, et al. Two chromogranin a-derived peptides induce calcium entry in human neutrophils by calmodulin-regulated calcium independent phospholipase A2. PLoS ONE. 2009;4:e4501. doi: 10.1371/journal.pone.0004501
- Frodermann V, Nahrendorf M. Neutrophil-macrophage cross-talk in acute myocardial infarction. Eur Heart J. 2017;38:198-200. doi: 10.1093/eurheartj/ehw085
- Bassino E, Fornero S, Gallo MP, et al. Catestatin exerts direct protective effects on rat cardiomyocytes undergoing ischemia/reperfusion by stimulating PI3K-Akt-GSK3β pathway and preserving mitochondrial membrane potential. PLoS ONE. 2015;10:e0119790. doi: 10.1371/journal.pone.0119790
- Chu SY, Peng F, Wang J, et al. Catestatin in defense of oxidative-stress-induced apoptosis: A novel mechanism by activating the beta2 adrenergic receptor and PKB/Akt pathway in ischemic-reperfused myocardium. Peptides. 2020;123:170200. doi: 10.1016/j.peptides.2019.170200
- Zivkovic PM, Matetic A, Tadin Hadjina I, et al. Serum Catestatin Levels and Arterial Stiffness Parameters Are Increased in Patients with Inflammatory Bowel Disease. J Clin Med. 2020;9:628. doi: 10.3390/jcm9030628
- Penna C, Alloatti G, Gallo MP, et al. Catestatin improves post-ischemic left ventricular function and decreases ischemia/reperfusion injury in heart. Cell Mol Neurobiol. 2010;30:1171-9. doi: 10.1007/s10571-010-9598-5
- Kumrić M, Tičinović Kurir T, Borovac JA, Božić J. The Role of Natural Killer (NK) Cells in Acute Coronary Syndrome: A Comprehensive Review. Biomolecules. 2020;10:1514. doi: 10.3390/biom10111514
- Liao F, Zheng Y, Cai J, et al. Catestatin attenuates endoplasmic reticulum induced cell apoptosis by activation type 2 muscarinic acetylcholine receptor in cardiac ischemia/reperfusion. Sci Rep. 2015;5:16590. doi: 10.1038/srep16590
- Chu SY, Peng F, Wang J, et al. Catestatin in defense of oxidative-stress-induced apoptosis: A novel mechanism by activating the beta2 adrenergic receptor and PKB/Akt pathway in ischemic-reperfused myocardium. Peptides. 2020;123:170200. doi: 10.1016/j.peptides.2019.170200
- Brar BK, Helgeland E, Mahata SK, et al. Human catestatin peptides differentially regulate infarct size in the ischemic-reperfused rat heart. Regul Pept. 2010;165:63-70. doi: 10.1016/j.regpep.2010.07.153
- Zhu D, Wang F, Yu H, et al. Catestatin is useful in detecting patients with stage B heart failure. Biomarkers. 2011;16(8):691-7. doi: 10.3109/1354750X.2011.629058
- Liu L, Ding W, Li R, et al. Plasma levels and diagnostic value of catestatin in patients with heart failure. Peptides. 2013;46:20-5. doi: 10.1016/j.peptides.2013.05.003
- Borovac JA, Glavas D, Susilovic Grabovac Z, et al. Catestatin in Acutely Decompensated Heart Failure Patients: Insights from the CATSTAT-HF Study. J Clin Med. 2019;8(8):1132. doi: 10.3390/jcm8081132
- Borovac JA, Glavas D, Susilovic Grabovac Z, et al. Circulating sST2 and catestatin levels in patients with acute worsening of heart failure: a report from the CATSTAT-HF study. ESC Heart Fail. 2020;7(5):2818-28. doi: 10.1002/ehf2.12882
- Peng F, Chu S, Ding W, et al. The predictive value of plasma catestatin for all-cause and cardiac deaths in chronic heart failure patients. Peptides. 2016;86:112-7. doi: 10.1016/j.peptides.2016.10.007
- Wołowiec Ł, Rogowicz D, Banach J, et al. Catestatin as a New Prognostic Marker in Stable Patients with Heart Failure with Reduced Ejection Fraction in Two-Year Follow-Up. Dis Markers. 2020;2020:8847211. doi: 10.1155/2020/8847211
- Ottesen AH, Carlson CR, Louch WE, et al. Glycosylated Chromogranin A in Heart Failure: Implications for Processing and Cardiomyocyte Calcium Homeostasis. Circ Heart Fail. 2017;10(2):e003675. doi: 10.1161/CIRCHEARTFAILURE.116.003675
- Watanabe T. The Emerging Roles of Chromogranins and Derived Polypeptides in Atherosclerosis, Diabetes, and Coronary Heart Disease. Int J Mol Sci. 2021;22(11):6118. doi: 10.3390/ijms22116118
- Алиева А.М., Теплова Н.В., Батов М.А., и др. Пентраксин-3 – перспективный биологический маркер при сердечной недостаточности: литературный обзор. Consilium Medicum. 2022;24(1):53-9. doi: 10.26442/20751753.2022.1.201382
- Алиева А.М., Пинчук Т.В., Воронкова К.В., и др. Неоптерин – биомаркер хронической сердечной недостаточности (обзор современной литературы). Consilium Medicum. 2021;23(10):756-9. doi: 10.26442/20751753.2021.10.201113
- Алиева А.М., Алмазова И.И., Пинчук Т.В., и др. Значение копептина в диагностике и прогнозе течения сердечно-сосудистых заболеваний. Клиническая медицина. 2020;98(3):203-9. doi: 10.30629/0023-2149-2020-98-3-203-209
- Zalewska E, Kmieć P, Sworczak K. Role of Catestatin in the Cardiovascular System and Metabolic Disorders. Front Cardiovasc Med. 2022;9:909480. doi: 10.3389/fcvm.2022.909480
- Мещеряков Ю.В., Губарева И.В., Губарева Е.Ю., Алексеева А.Ю. Роль катестатина в развитии и декомпенсации сердечной недостаточности: обзор литературы. Российский кардиологический журнал. 2021;26(S3):4492. doi: 10.15829/1560-4071-2021-4492
Supplementary files
