Oral glucose-lowering drugs and long-term risk of benign prostatic hyperplasia

Cover Page

Cite item

Full Text

Abstract

Background. One of the most prominent threats for masculine health is comorbidity between benign prostatic hyperplasia (BPH) and diabetes mellitus type 2. Many publications suppose influence of hyperglycemia on lower urinary tract obstruction. Question about influence of the most common oral glucose-lowering drugs – biguanides (metformin hydrochloride) and third-generation sulfonylurea (glimepiride) has not been answered yet.

Aim. To assess whether glucose-lowering drugs affect risk of benign prostatic hyperplasia (BPH) in men with type 2 diabetes who initiated first-line treatment with either metformin or sulfonylurea monotherapy from 2012 until 2022 in the National Medical Research Center for Endocrinology.

Materials and methods. Single centre, retrospective, comparative study. Retrospective analysis of in-/outpatient medical cards. Primary outcome measures: Rates of subsequent BPH, identified based on community prescriptions for BPH-related treatment or hospital BPH diagnoses, and rates of transurethral resection of the prostate (TURP). Rates in metformin hydrochloride and sulfonylurea users were compared overall and stratified by 6-month haemoglobin A1c (HbA1c) using Cox regression.

Results. In 95 metformin initiators with a median follow-up of 10 years, the 10-year cumulative BPH incidence was 25.7% (25 cases; 95% CI 24.2–27.1). Compared with 95 sulfonylurea users [median follow-up 8 years, 10-year cumulative incidence 27.4% (17 cases; 95% CI 16.2–18.6)], the crude HR for BPH was 0.83 (95% CI 0.77–0.89) and adjusted HR in the ITT analyses was 0.97 (95% CI 0.88–1.06). For TURP, the adjusted HR was 0.96 (95% CI 0.63–1.46). In the as-treated analysis, adjusted HR for BPH was 0.91 (95% CI 0.81–1.02).

Conclusion. Compared with sulfonylurea, metformin did not substantially reduce the incidence of BPH in men with diabetes.

About the authors

Stanislav N. Volkov

Endocrinology Research Centre

Email: iceberg1995@mail.ru
ORCID iD: 0000-0002-2049-2191

Cand. Sci. (Med.)

Russian Federation, Moscow

Robert K. Mikheev

Endocrinology Research Centre

Author for correspondence.
Email: iceberg1995@mail.ru
ORCID iD: 0000-0001-5826-3186
SPIN-code: 9767-8468

Graduate Student

Russian Federation, Moscow

Olga R. Grigoryan

Endocrinology Research Centre

Email: iceberg1995@mail.ru
ORCID iD: 0000-0003-4979-7420
SPIN-code: 3060-8242

D. Sci. (Med.), Prof.

Russian Federation, Moscow

Vitaliy I. Tereshchenko

Endocrinology Research Centre

Email: iceberg1995@mail.ru
ORCID iD: 0000-0002-4478-5968

Urologist-Andrologist

Russian Federation, Moscow

Vladimir S. Stepanchenko

Endocrinology Research Centre

Email: iceberg1995@mail.ru
ORCID iD: 0000-0003-2799-2241

Urologist-Andrologist

Russian Federation, Moscow

Elena N. Andreeva

Endocrinology Research Centre; Russian University of Medicine

Email: iceberg1995@mail.ru
ORCID iD: 0000-0001-8425-0020
SPIN-code: 1239-2937

D. Sci. (Med.), Prof.

Russian Federation, Moscow; Moscow

References

  1. Maserejian NN, Chen S, Chiu GR, et al. Incidence of lower urinary tract symptoms in a population-based study of men and women. Urology. 2013;82(3):560-4. doi: 10.1016/j.urology.2013.05.009
  2. Hammarsten J, Peeker R. Urological aspects of the metabolic syndrome. Nat Rev Urol. 2011;8(9):483-94. doi: 10.1038/nrurol.2011.112
  3. El-Arabey AA, Abdalla M, Ali Eltayb W. Metformin: Ongoing Journey with Superdrug Revolution. Adv Pharm Bull. 2019;9(1):1-4. doi: 10.15171/apb.2019.001
  4. Haring A, Murtola TJ, Talala K, et al. Antidiabetic drug use and prostate cancer risk in the Finnish Randomized Study of Screening for Prostate Cancer. Scand J Urol. 2017;51(1):5-12. doi: 10.1080/21681805.2016.1271353
  5. Preston MA, Riis AH, Ehrenstein V, et al. Metformin use and prostate cancer risk. Eur Urol. 2014;66(6):1012-20. doi: 10.1016/j.eururo.2014.04.027
  6. Kuo YJ, Sung FC, Hsieh PF, et al. Metformin reduces prostate cancer risk among men with benign prostatic hyperplasia: A nationwide population-based cohort study. Cancer Med. 2019;8(5):2514-23. doi: 10.1002/cam4.2025
  7. Currie CJ, Poole CD, Gale EA. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia. 2009;52(9):1766-77. doi: 10.1007/s00125-009-1440-6
  8. Farmer RE, Ford D, Mathur R, et al. Metformin use and risk of cancer in patients with type 2 diabetes: a cohort study of primary care records using inverse probability weighting of marginal structural models. Int J Epidemiol. 2019;48(2):527-37. doi: 10.1093/ije/dyz005
  9. Tsilidis KK, Capothanassi D, Allen NE, et al. Metformin does not affect cancer risk: a cohort study in the U.K. Clinical Practice Research Datalink analyzed like an intention-to-treat trial. Diabetes Care. 2014;37(9):2522-32. doi: 10.2337/dc14-0584
  10. Wang Z, Xiao X, Ge R, et al. Metformin inhibits the proliferation of benign prostatic epithelial cells. PLoS One. 2017;12(3):e0173335. doi: 10.1371/journal.pone.0173335
  11. Murff HJ, Roumie CL, Greevy RA, et al. Thiazolidinedione and Metformin Use and the Risk of Benign Prostate Hyperplasia in Veterans with Diabetes Mellitus. J Mens Health. 2014;11(4):157-62. doi: 10.1089/jomh.2014.0051
  12. Hong Y, Lee S, Won S. The preventive effect of metformin on progression of benign prostate hyperplasia: A nationwide population-based cohort study in Korea. PLoS One. 2019;14(7):e0219394. doi: 10.1371/journal.pone.0219394
  13. Davies MJ, D'Alessio DA, Fradkin J, et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2018;61(12):2461-98. doi: 10.1007/s00125-018-4729-5
  14. Ulrichsen SP, Mor A, Svensson E, et al. Lifestyle factors associated with type 2 diabetes and use of different glucose-lowering drugs: cross-sectional study. PLoS One. 2014;9(11):e111849. doi: 10.1371/journal.pone.0111849
  15. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854-65.
  16. Nathan DM, Buse JB, Davidson MB, et al. Management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2006;29(8):1963-72. doi: 10.2337/dc06-9912
  17. Andersen HL. Medicinsk kompendium. 16 ed. Copenhagen, Denmark: Nyt Nordisk Forlag Arnold Busck, 2004.
  18. American Diabetes Association. 6. Glycemic Targets: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl. 1):S66-76. doi: 10.2337/dc20-S006
  19. Дедов И.И., Шестакова М.В., Майоров А.Ю., и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Под ред. И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. 10-й вып. Сахарный диабет. 2021;24(1S):1-148 [Dedov II, Shestakova MV, Mayorov AYu, et al. Standards of specialized diabetes care. Edited by II Dedov, MV Shestakova, AYu Mayorov. 10th edition. Diabetes Mellitus. 2021;24(1S):1-148 (in Russian)]. doi: 10.14341/DM12802
  20. Xu H, Fu S, Chen Y, et al. Smoking habits and benign prostatic hyperplasia: A systematic review and meta-analysis of observational studies. Medicine (Baltimore). 2016;95(32):e4565. doi: 10.1097/MD.0000000000004565

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).