Nutritional support as a way to adjust the body's immune response: Experimental data and clinical studies. A review
- Authors: Makhova A.A.1, Fedorova T.A.1, Shikh E.V.1
-
Affiliations:
- Sechenov First Moscow State Medical University (Sechenov University)
- Issue: Vol 26, No 12 (2024): Коморбидность в клинике внутренних болезней
- Pages: 837-845
- Section: Articles
- URL: https://journal-vniispk.ru/2075-1753/article/view/289171
- DOI: https://doi.org/10.26442/20751753.2024.12.203044
- ID: 289171
Cite item
Full Text
Abstract
According to the World Health Organization, 2 billion people all over the world suffer from infectious diseases every year. Infectious diseases remain among the leading causes of death and the first cause of premature death despite the implementation of vaccination programs. Vitamins and micronutrients are essential in supporting both the cellular and humoral parts of the immune system (IS), increasing resistance to infections. Micronutrient deficiency is a recognized global public health problem, and hypovitaminosis and nutrient deficiency conditions predispose to infections. Micronutrients such as vitamins A, C, D, E, B2, B6, B12, folic acid, selenium, zinc, and iron are necessary to maintain immunocompetency. Both in adulthood and in old age, patients have an increased risk of occurrence and severity of infections due to the high prevalence of hypovitaminosis, a decrease in the function of the IS, and the presence of comorbidities. Nutritional support by vitamin and mineral complexes (VMC) with rational composition is a strategy to correct the immune response. VMCs should complement a healthy diet and contain micronutrients within the recommended amounts at the level of daily food requirement. It is advisable to use a differentiated approach to VMCs to modulate the IS function. Basic nutritional support with vitamins C, D, and zinc is most often sufficient for people without the risks of severe and complicated acute respiratory infections. Various mechanisms of action and different targets of micronutrients that correct the body's immune response and synergistic interactions support the discussion of the hypothesis of a more pronounced effect of multicomponent VMCs. In the presence of chronic diseases, in the case of comorbidity, it is advisable to use expanded formulation VMCs containing, in addition to vitamins C, D, and zinc, other micronutrients, such as vitamins A, E, B, copper, selenium, which helps reduce the risk of severe course and complications of respiratory infections in at-risk groups.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Anna A. Makhova
Sechenov First Moscow State Medical University (Sechenov University)
Author for correspondence.
Email: makhova_a_a@staff.sechenov.ru
ORCID iD: 0000-0001-9817-9886
D. Sci. (Med.)
Russian Federation, MoscowTatiana A. Fedorova
Sechenov First Moscow State Medical University (Sechenov University)
Email: makhova_a_a@staff.sechenov.ru
ORCID iD: 0000-0003-1762-6934
D. Sci. (Med.)
Russian Federation, MoscowEvgenia V. Shikh
Sechenov First Moscow State Medical University (Sechenov University)
Email: makhova_a_a@staff.sechenov.ru
ORCID iD: 0000-0001-6589-7654
D. Sci. (Med.), Prof.
Russian Federation, MoscowReferences
- World Health Organization. WHO coronavirus disease (COVID-19) dashboard. Available at: https://covid19.who.int. Accessed: 15.02.2024.
- Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536-44. doi: 10.1038/s41564-020-0695-z
- Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125(2 Suppl. 2):S3-23. doi: 10.1016/j.jaci.2009.12.980
- Gasmi A, Tippairote T, Mujawdiya PK, et al. Micronutrients as immunomodulatory tools for COVID-19 management. Clin Immunol. 2020;220:108545. doi: 10.1016/j.clim.2020.108545
- Rayman MP, Calder PC. Optimising COVID-19 vaccine efficacy by ensuring nutritional adequacy. Br J Nutr. 2021;126(12):1919-90. doi: 10.1017/S0007114521000386
- Castelo-Branco C, Soveral I. The immune system and aging: a review. Gynecol Endocrinol. 2014;30(1):16-22. doi: 10.3109/09513590.2013.852531
- Pandya PH, Murray ME, Pollok KE, Renbarger JL. The Immune System in Cancer Pathogenesis: Potential Therapeutic Approaches. J Immunol Res. 2016;2016:4273943. doi: 10.1155/2016/4273943
- Maggini S, Maldonado P, Cardim P, et al. Vitamins C, D and Zinc: Synergistic Roles in Immune Function and Infections. Vitam Miner. 2017;6:1318-2376. doi: 10.4172/2376-1318.1000167
- Calder PC. Feeding the immune system. Proc Nutr Soc. 2013;72(3):299-309. doi: 10.1017/S0029665113001286
- Pecora F, Persico F, Argentiero A, et al. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020;12(10):3198. doi: 10.3390/nu12103198
- Calder PC. Nutrition, immunity and COVID-19. BMJ Nutr Prev Health. 2020;3(1):74-92. doi: 10.1136/bmjnph-2020-000085
- Ших Е.В., Махова А.А., Прокофьев А.Б., Назарчук А.С. Витамины и микроэлементы в профилактике инфекционных заболеваний у женщин репродуктивного возраста. Акушерство и гинекология. 2021;8:220-8 [Shikh EV, Makhova AA, Prokofiev AB, Nazarchuk AS. Vitamins and trace elements in the prevention of infectious diseases in women of reproductive age. Obstetrics and Gynegology. 2021;8:220-8 (in Russian)]. doi: 10.18565/aig.2021.8.220-228
- Alpert P. The role of vitamins and minerals on the immune system. Home Health Care Manag Pract. 2017;29(3):199-202. doi: 10.1177/1084822317713300
- Bresnahan KA, Tanumihardjo SA. Undernutrition, the acute phase response to infection, and its effects on micronutrient status indicators. Adv Nutr. 2014;5(6):702-11. doi: 10.3945/an.114.006361
- Pecora F, Persico F, Argentiero A, et al. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020;12(10). doi: 10.3390/nu12103198
- Katona P, Katona-Apte J. The interaction between nutrition and infection. Clin Infect Dis. 2008;46(10):1582-8. doi: 10.1086/587658
- Maggini S, Pierre A, Calder PC. Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients. 2018;10(10):1531. doi: 10.3390/nu10101531
- Yoshikawa TT. Epidemiology and unique aspects of aging and infectious diseases. Clin Infect Dis. 2000;30(6):931-3. doi: 10.1086/313792
- Пигарова Е.А., Поваляева А.А., Дзеранова Л.К., и др. Роль витамина D при сезонных острых респираторных вирусных инфекциях и COVID-19. Терапевтический архив. 2020;92(11):98-105 [Pigarova EA, Povalyaeva AA, Dzeranova LK, et al. The role of vitamin D in seasonal acute respiratory viral infections and COVID-19. Terapevticheskii Arkhiv (Ter. Arkh.). 2020;92(11):98-105 (in Russian)]. doi: 10.26442/00403660.2020.11.000785
- Ших Е.В., Махова А.А., Сизова Ж.М., Ших Н.В. Витамин D в профилактике осложнений беременности и заболеваний у детей первого года жизни. Вопросы гинекологии, акушерства и перинатологии. 2021;20(5):114-23 [Shikh EV, Makhova AA, Sizova ZhM, Shikh NV. The role of Vitamin D in the prevention of pregnancy complications and childhood diseases in the first year of life. Gynecology, Obstetrics and Perinatology. 2021;20(5):114-23 (in Russian)]. doi: 10.20953/1726-1678-2021-5-114-123
- Martineau AR, Jolliffe DA, Greenberg L, et al. Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health Technol Assess. 2019;23(2):1-44. doi: 10.3310/hta23020
- Berger MM, Herter-Aeberli I, Zimmermann MB, et al. Strengthening the immunity of the Swiss population with micronutrients: A narrative review and call for action. Clin Nutr ESPEN. 2021;43:39-48. doi: 10.1016/j.clnesp.2021.03.012
- Autier P, Mullie P, Macacu A, et al. Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol. 2017;5(12):986-1004. doi: 10.1016/S2213-8587(17)30357-1
- Charan J, Goyal JP, Saxena D, Yadav P. Vitamin D for prevention of respiratory tract infections: A systematic review and meta-analysis. J Pharmacol Pharmacother. 2012;3(4):300-3. doi: 10.4103/0976-500X.103685
- Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. doi: 10.1136/bmj.i6583
- Brenner H. Vitamin D Supplementation to Prevent COVID-19 Infections and Deaths-Accumulating Evidence from Epidemiological and Intervention Studies Calls for Immediate Action. Nutrients. 2021;13(2):411. doi: 10.3390/nu13020411
- Jain A, Chaurasia R, Sengar NS, et al. Analysis of vitamin D level among asymptomatic and critically ill COVID-19 patients and its correlation with inflammatory markers. Sci Rep. 2020;10(1):20191. doi: 10.1038/s41598-020-77093-z
- D'Avolio A, Avataneo V, Manca A, et al. 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2. Nutrients. 2020;12(5):1359. doi: 10.3390/nu12051359
- De Smet D, De Smet K, Herroelen P, et al. Vitamin D deficiency as risk factor for severe COVID-19: a convergence of two pandemics. medRxiv. 2020. doi: 10.1101/2020.05.01.20079376
- Radujkovic A, Hippchen T, Tiwari-Heckler S, et al. Vitamin D Deficiency and Outcome of COVID-19 Patients. Nutrients. 2020;12(9). doi: 10.3390/nu12092757
- Merzon E, Tworowski D, Gorohovski A, et al. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. FEBS J. 2020;287(17):3693-702. doi: 10.1111/febs.15495
- Торшин И.Ю., Громова О.А., Чучалин А.Г. Профилактика и лечение COVID-19 с позиций постгеномного фармакологического анализа. Систематический компьютерный анализ 290 000 научных статей по COVID-19. Терапевтический архив. 2024;96(3):205-11 [Torshin IYu, Gromova OA, Chuchalin AG. Prevention and treatment of COVID-19 based on post-genomic pharmacological analysis: Systematic computer analysis of 290,000 scientific articles on COVID-19. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(3):205-11 (in Russian)]. doi: 10.26442/00403660.2024.03.202635
- Pereira M, Dantas Damascena A, Galvão Azevedo LM, et al. Vitamin D deficiency aggravates COVID-19: systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2022;62(5):1308-36. doi: 10.1080/10408398.2020.1841090
- Yao X, Hamilton RG, Weng NP, et al. Frailty is associated with impairment of vaccine-induced antibody response and increase in post-vaccination influenza infection in community-dwelling older adults. Vaccine. 2011;29(31):5015-21. doi: 10.1016/j.vaccine.2011.04.077
- Jääskeläinen T, Itkonen ST, Lundqvist A, et al. The positive impact of general vitamin D food fortification policy on vitamin D status in a representative adult Finnish population: evidence from an 11-y follow-up based on standardized 25-hydroxyvitamin D data. Am J Clin Nutr. 2017;105(6):1512-50. doi: 10.3945/ajcn.116.151415
- Национальная программа «Недостаточность витамина D у детей и подростков Российской Федерации: современные подходы к коррекции». М.: ПедиатрЪ, 2018 [Natsional'naia programma «Nedostatochnost' vitamina D u detei i podrostkov Rossiiskoi Federatsii: sovremennye podkhody k korrektsii». Moscow: Pediatr"", 2018 (in Russian)].
- Carr AC, Maggini S. Vitamin C and Immune Function. Nutrients. 2017;9(11):1211. doi: 10.3390/nu9111211
- Johnston CS, Martin LJ, Cai X. Antihistamine effect of supplemental ascorbic acid and neutrophil chemotaxis. J Am Coll Nutr. 1992;11(2):172-6.
- Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2013;2013(1):CD000980. doi: 10.1002/14651858.CD000980.pub4
- Hunt C, Chakravorty NK, Annan G, et al. The clinical effects of vitamin C supplementation in elderly hospitalized patients with acute respiratory infections. Int J Vitam Nutr Res. 1994;64(3):212-9.
- Maret W. Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr. 2013;4(1):82-91. doi: 10.3945/an.112.003038
- Jothimani D, Kailasam E, Danielraj S, et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int J Infect Dis. 2020;100:343-4. doi: 10.1016/j.ijid.2020.09.014
- Wessels I, Rolles B, Slusarenko AJ, Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutr. 2022;127(2):214-32. doi: 10.1017/S0007114521000738
- Avery JC, Hoffmann PR. Selenium, Selenoproteins, and Immunity. Nutrients. 2018;10(9):1203. doi: 10.3390/nu10091203
- Villamor E, Fawzi WW. Effects of vitamin A supplementation on immune responses and correlation with clinical outcomes. Clin Microbiol Rev. 2005;18(3):446-64. doi: 10.1128/CMR.18.3.446-464.2005
- Blomhoff HK, Smeland EB, Erikstein B, et al. Vitamin A is a key regulator for cell growth, cytokine production, and differentiation in normal B cells. J Biol Chem. 1992;267(33):23988-92.
- Bermano G, Méplan C, Mercer DK, Hesketh JE. Selenium and viral infection: are there lessons for COVID-19? Br J Nutr. 2021;125(6):618-27. doi: 10.1017/S0007114520003128
- Beck MA, Levander OA, Handy J. Selenium deficiency and viral infection. J Nutr. 2003;133(5 Suppl. 1):1463S-7S. doi: 10.1093/jn/133.5.1463S
- Zhang J, Taylor EW, Bennett K, et al. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr. 2020;111(6):1297-9. doi: 10.1093/ajcn/nqaa095
- Steinbrenner H, Al-Quraishy S, Dkhil MA, et al. Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv Nutr. 2015;6(1):73-82. doi: 10.3945/an.114.007575
- Moghaddam A, Heller RA, Sun Q, et al. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients. 2020;12(7):2098. doi: 10.3390/nu12072098
- Kieliszek M, Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses. 2020;143:109878. doi: 10.1016/j.mehy.2020.109878
- Jiang Y, Li C, Wu Q, et al. Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses. Nat Commun. 2019;10(1):2935. doi: 10.1038/s41467-019-11002-5
- Frost JN, Tan TK, Abbas M, et al. Hepcidin-Mediated Hypoferremia Disrupts Immune Responses to Vaccination and Infection. Med. 2021;2(2):164-79.e12. doi: 10.1016/j.medj.2020.10.004
- Ших Е.В., Махова А.А., Еременко Н.Н., и др. Рациональные комбинации в фармакотерапии железодефицита. Вопросы гинекологии, акушерства и перинатологии. 2023;22(3):108-16 [Shikh EV, Makhova AA, Eremenko NN, et al. Rational combinations in pharmacotherapy for iron deficiency. Gynecology, Obstetrics and Perinatology. 2023;22(3):108-16 (in Russian)]. doi: 10.20953/1726-1678-2023-3-108-116
- Qureshi AA, Tan X, Reis JC, et al. Suppression of nitric oxide induction and pro-inflammatory cytokines by novel proteasome inhibitors in various experimental models. Lipids Health Dis. 2011;10:177. doi: 10.1186/1476-511X-10-177
- Patel O, Kjer-Nielsen L, Le Nours J, et al. Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nat Commun. 2013;4:2142. doi: 10.1038/ncomms3142
- Hartmann N, McMurtrey C, Sorensen ML, et al. Riboflavin Metabolism Variation among Clinical Isolates of Streptococcus pneumoniae Results in Differential Activation of Mucosal-associated Invariant T Cells. Am J Respir Cell Mol Biol. 2018;58(6):767-76. doi: 10.1165/rcmb.2017-0290OC
Supplementary files
