Functional magnetic resonance imaging in the diagnosis of cognitive impairment: A review

Cover Page

Cite item

Full Text

Abstract

By now, methods structural magnetic resonance imaging (MRI) have firmly taken their rightful place in the diagnosis diseases accompanied by impaired cognitive functions. They make it possible to determine topical localization foci brain damage, degree impairment, and also contribute clarifying etiology disease. However, it should be noted that possibilities standard MRI are absolutely not exhaustive and are not always able diagnose changes specific particular disease. In addition, there is no complete correspondence between observed degree damage structure individual parts brain and features clinical manifestations disorders higher cortical functions. This makes it difficult use conventional MRI for prognostic purposes calculating course diseases. Currently, new methods neuroimaging based on magnetic resonance are being actively developed. These include, in particular, functional MRI (fMRI). Feature of fMRI is the ability to identify specific parts brain involved in the implementation certain cognitive functions. Knowing the topographic and anatomical localization these departments in healthy individuals, it is possible to characterize the changes observed in the development disorders higher cortical functions. This makes it possible to understand structural and functional foundations certain clinical equivalents observed in certain nosological forms. In addition, this approach makes it possible to predict development course disease, and also has a serious potential for assessing rehabilitation opportunities. Obtaining such data helps to improve the construction diagnostic models, optimizes therapeutic and diagnostic algorithm. The purpose of this publication is to analyze and systematize data available in the literature use fMRI in elderly patients with impaired cognitive functions in cerebrovascular pathology and Alzheimer's disease.

About the authors

Anna M. Tantasheva

Almazov National Medical Research Centre

Email: sergiognezdo@yandex.ru
ORCID iD: 0000-0003-4149-0029

Neurologist

Russian Federation, Saint Petersburg

Sergey V. Vorobyev

Almazov National Medical Research Centre; Saint Petersburg State Pediatric Medical University

Author for correspondence.
Email: sergiognezdo@yandex.ru
ORCID iD: 0000-0002-4830-907X

D. Sci. (Med.)

Russian Federation, Saint Petersburg; Saint Petersburg

Stanislav N. Yanishevskiy

Almazov National Medical Research Centre

Email: sergiognezdo@yandex.ru
ORCID iD: 0000-0002-6484-286X

D. Sci. (Med.), Assoc. Prof.

Russian Federation, Saint Petersburg

Aleksandr Y. Efimtsev

Almazov National Medical Research Centre

Email: sergiognezdo@yandex.ru

D. Sci. (Med.)

Russian Federation, Saint Petersburg

Andrey V. Sokolov

Almazov National Medical Research Centre; Kirov Military Medical Academy

Email: sergiognezdo@yandex.ru
ORCID iD: 0000-0003-0685-5109

Radiologist

Russian Federation, Saint Petersburg; Saint Petersburg

Ivan K. Ternovykh

Almazov National Medical Research Centre

Email: sergiognezdo@yandex.ru
ORCID iD: 0000-0002-0074-4021

Assistant

Russian Federation, Saint Petersburg

Maria S. Antusheva

Almazov National Medical Research Centre

Email: sergiognezdo@yandex.ru
ORCID iD: 0000-0002-4456-0398

Student

Russian Federation, Saint Petersburg

Kamila S. Seitkazina

Almazov National Medical Research Centre

Email: sergiognezdo@yandex.ru
ORCID iD: 0000-0001-6772-7018

Clinical Resident

Russian Federation, Saint Petersburg

Kristina M. Shubina

Almazov National Medical Research Centre

Email: sergiognezdo@yandex.ru
ORCID iD: 0000-0002-7336-3860

Graduate Student

Russian Federation, Saint Petersburg

References

  1. Яхно Н.Н., Захаров В.В., Локшина А.Б., и др. Деменции. М.: МЕДпресс-информ, 2011 [Iakhno NN, Zakharov VV, Lokshina AB, et al. Dementsii. Moscow: MEDpress-inform, 2011 (in Russian)].
  2. Апчел В.Я., Цыган В.Н. Память и внимание – интеграторы психики. СПб.: Логос, 2004 [Apchel VIa, Tsygan VN. Pamiat' i vnimanie – integratory psikhiki. Saint Petersburg: Logos, 2004 (in Russian)].
  3. Баулина М.Е. Нейропсихология. М.: ВЛАДОС, 2018 [Baulina ME. Neiropsikhologiia. Moscow: VLADOS, 2018 (in Russian)].
  4. Хомская Е.Д. Нейропсихология. СПб.: Питер, 2005 [Khomskaia ED. Neiropsikhologiia. Saint Petersburg: Piter, 2005 (in Russian)].
  5. Выготский Л.С. Развитие высших психических функций. М.: Изд-во Акад. пед. наук РСФСР, 1960 [Vygotskii LS. Razvitie vysshikh psikhicheskikh funktsii. Moscow: Izd-vo Akad. ped. nauk RSFSR, 1960 (in Russian)].
  6. Лурия А.Р. Высшие корковые функции человека. М.: Изд. МГУ, 1962 [Luriia AR. Vysshie korkovye funktsii cheloveka. Moscow: Izd. MGU, 1962 (in Russian)].
  7. Буккиева Т.А., Чегина Д.С., Ефимцев А.Ю., и др. Функциональная МРТ покоя. Общие вопросы и клиническое применение. Российский электронный журнал лучевой диагностики. 2019;9(2):150-70 [Bukkieva TA, Chegina DS, Efimtsev AYu, et al. Functional resting MRI. General issues and clinical application. Russian Electronic Journal of Radiology. 2019;9(2):150-70 (in Russian)]. doi: 10.21569/2222-7415- 2019-9-2-150-170
  8. Кремнева Е.И., Синицын Д.О., Добрынина Л.А., и др. Функциональная МРТ покоя в неврологии и психиатрии. Журнал неврологии и психиатрии им. С.С. Корсакова. 2022;122(2):5-14 [Kremneva EI, Sinitsyn DO, Dobrynina LA, et al. Resting state functional MRI in neurology and psychiatry. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(2):5-14 (in Russian)]. doi: 10.17116/jnevro20221220215
  9. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA. 1990;87(24):9868-72. doi: 10.1073/pnas.87.24.9868
  10. Fleisher AS, Podraza KM, Bangen KJ, et al. Cerebral perfusion and oxygenation differences in Alzheimer's disease risk. Neurobiol Aging. 2009;30(11):1737-48. doi: 10.1016/j.neurobiolaging.2008.01.012
  11. Одинак М.М., Воробьев С.В., Фокин В.А., и др. Функциональная магнитно-резонансная томография как метод оценки состояния когнитивных функций. Вестник Российской военно-медицинской академии. 2011;4(36):7-13 [Odinak MM, Vorob'ev SV, Fokin VA, et al. Functional magnetic resonance imaging as a method of assessing the state of cognitive functions. Bulletin of the Russian Military Medical Academy. 2011;4 (36):7-13 (in Russian)].
  12. Селивёрстов Ю.А., Селивёрстова Е.В., Коновалов Р.Н., и др. Функциональная магнитно-резонансная томография покоя: возможности и будущее метода. Бюллетень Национального общества по изучению болезни Паркинсона и расстройств движений. 2014;1:16-9 [Seliverstov IuA, Seliverstova EV, Konovalov RN, et al. Funktsional'naia magnitno-rezonansnaia tomografiia pokoia: vozmozhnosti i budushchee metoda. Biulleten' Natsional'nogo obshchestva po izucheniiu bolezni Parkinsona i rasstroistv dvizhenii. 2014;1:16-9 (in Russian)].
  13. Дмитриев А.Ю., Дашьян В.Г. Функциональная магнитно-резонансная томография в нейрохирургии. Журнал неврологии и психиатрии им. С.С. Корсакова. 2021;121(7):118-23 [Dmitriev AYu, Dash'yan VG. Functional magnetic resonance imaging in neurosurgery. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;12(7):118-23 (in Russian)]. doi: 10.17116/jnevro2021121071118
  14. Liu M, Wang Y, Zhang H, et al. Multiscale functional connectome abnormality predicts cognitive outcomes in subcortical ischemic vascular disease. Cereb Cortex. 2022;32(21):4641-66. doi: 10.1093/cercor/bhab507
  15. Grieder M, Wang DJJ, Dierks T, et al. Default Mode Network Complexity and Cognitive Decline in Mild Alzheimer's Disease. Front Neurosci. 2018;12:770. doi: 10.3389/fnins.2018.00770
  16. Andrews-Hanna JR. The brain's default network and its adaptive role in internal mentation. Neuroscientist. 2012;18(3):251-70. doi: 10.1177/1073858411403316
  17. Tuladhar AM, Snaphaan L, Shumskaya E, et al. Default Mode Network Connectivity in Stroke Patients. PLoS One. 2013;8(6):e66556. doi: 10.1371/journal.pone.0066556
  18. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15(10):483-506. doi: 10.1016/j.tics.2011.08.003
  19. Ma J, Liu F, Wang Y, et al. Frequency-dependent white-matter functional network changes associated with cognitive deficits in subcortical vascular cognitive impairment. Neuroimage Clin. 2022;36:103245. doi: 10.1016/j.nicl.2022.103245
  20. Dunet V, Deverdun J, Charroud C, et al. Cognitive Impairment and Basal Ganglia Functional Connectivity in Vascular Parkinsonism. AJNR Am J Neuroradiol. 2016;37(12):2310-36. doi: 10.3174/ajnr.A4889
  21. Ye Q, Bai F. Contribution of diffusion, perfusion and functional MRI to the disconnection hypothesis in subcortical vascular cognitive impairment. Stroke Vasc Neurol. 2018;3(3):131-3. doi: 10.1136/svn-2017-000080
  22. Wang C, Miao P, Liu J, et al. Validation of cerebral blood flow connectivity as imaging prognostic biomarker on subcortical stroke. J Neurochem. 2021;159(1):172-84. doi: 10.1111/jnc.15359
  23. Jung J, Laverick R, Nader K, et al. Altered hippocampal functional connectivity patterns in patients with cognitive impairments following ischaemic stroke: A resting-state fMRI study. Neuroimage Clin. 2021;32:102742. doi: 10.1016/j.nicl.2021.102742
  24. Wang T, Mantini D, Gillebert CR. The potential of real-time fMRI neurofeedback for stroke rehabilitation: A systematic review. Cortex. 2018;107:148-65. doi: 10.1016/j.cortex.2017.09.006
  25. Dodd KC, Nair VA, Prabhakaran V. Role of the Contralesional vs. Ipsilesional Hemisphere in Stroke Recovery. Front Hum Neurosci. 2017;11:469. doi: 10.3389/fnhum.2017.00469
  26. Crofts A, Kelly ME, Gibson CL. Imaging Functional Recovery Following Ischemic Stroke: Clinical and Preclinical fMRI Studies. J Neuroimaging. 2020;30(1):5-14. doi: 10.1111/jon.12668
  27. Griffanti L, Dipasquale O, Laganà MM, et al. Effective artifact removal in resting state fMRI data improves detection of DMN functional connectivity alteration in Alzheimer's disease. Front Hum Neurosci. 2015;9:449. doi: 10.3389/fnhum.2015.00449
  28. Liao ZL, Tan YF, Qiu YJ, et al. Interhemispheric functional connectivity for Alzheimer's disease and amnestic mild cognitive impairment based on the triple network model. J Zhejiang Univ Sci B. 2018;19(12):924-34. doi: 10.1631/jzus.B1800381
  29. Uddin LQ, Yeo BTT, Spreng RN. Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks. Brain Topogr. 2019;32(6):926-42. doi: 10.1007/s10548-019-00744-6
  30. Contreras JA, Avena-Koenigsberger A, Risacher SL, et al. Resting state network modularity along the prodromal late onset Alzheimer's disease continuum. Neuroimage Clin. 2019;22:101687. doi: 10.1016/j.nicl.2019.101687
  31. Hojjati SH, Ebrahimzadeh A, Babajani-Feremi A. Identification of the Early Stage of Alzheimer's Disease Using Structural MRI and Resting-State fMRI. Front Neurol. 2019;10:904. doi: 10.3389/fneur.2019.00904
  32. Millar PR, Ances BM, Gordon BA, et al. Evaluating resting-state BOLD variability in relation to biomarkers of preclinical Alzheimer's disease. Neurobiol Aging. 2020;96:233-45. doi: 10.1016/j.neurobiolaging.2020.08.007
  33. Liang L, Zhao L, Wei Y, et al. Structural and Functional Hippocampal Changes in Subjective Cognitive Decline From the Community. Front Aging Neurosci. 2020;12:64. doi: 10.3389/fnagi.2020.00064
  34. Kazemifar S, Manning KY, Rajakumar N, et al. Spontaneous low frequency BOLD signal variations from resting-state fMRI are decreased in Alzheimer disease. PLoS One. 2017;12(6):e0178529. doi: 10.1371/journal.pone.0178529
  35. Zhou Y, Yu F, Duong TQ, Alzheimer's Disease Neuroimaging Initiative. White matter lesion load is associated with resting state functional MRI activity and amyloid PET but not FDG in mild cognitive impairment and early Alzheimer's disease patients. J Magn Reson Imaging. 2015;41(1):102-9. doi: 10.1002/jmri.24550

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Tantasheva A.M., Vorobyev S.V., Yanishevskiy S.N., Efimtsev A.Yu., Sokolov A.V., Ternovykh I.K., Antusheva M.S., Seitkazina K.S., Shubina K.M. Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).