Functional magnetic resonance imaging in the diagnosis of cognitive impairment: A review
- Authors: Tantasheva A.M.1, Vorobyev S.V.1,2, Yanishevskiy S.N.1, Efimtsev A.Y.1, Sokolov A.V.1,3, Ternovykh I.K.1, Antusheva M.S.1, Seitkazina K.S.1, Shubina K.M.1
-
Affiliations:
- Almazov National Medical Research Centre
- Saint Petersburg State Pediatric Medical University
- Kirov Military Medical Academy
- Issue: Vol 27, No 11 (2025): Neurology and rheumatology
- Pages: 652-658
- Section: Articles
- URL: https://journal-vniispk.ru/2075-1753/article/view/365527
- DOI: https://doi.org/10.26442/20751753.2025.11.203432
- ID: 365527
Cite item
Full Text
Abstract
By now, methods structural magnetic resonance imaging (MRI) have firmly taken their rightful place in the diagnosis diseases accompanied by impaired cognitive functions. They make it possible to determine topical localization foci brain damage, degree impairment, and also contribute clarifying etiology disease. However, it should be noted that possibilities standard MRI are absolutely not exhaustive and are not always able diagnose changes specific particular disease. In addition, there is no complete correspondence between observed degree damage structure individual parts brain and features clinical manifestations disorders higher cortical functions. This makes it difficult use conventional MRI for prognostic purposes calculating course diseases. Currently, new methods neuroimaging based on magnetic resonance are being actively developed. These include, in particular, functional MRI (fMRI). Feature of fMRI is the ability to identify specific parts brain involved in the implementation certain cognitive functions. Knowing the topographic and anatomical localization these departments in healthy individuals, it is possible to characterize the changes observed in the development disorders higher cortical functions. This makes it possible to understand structural and functional foundations certain clinical equivalents observed in certain nosological forms. In addition, this approach makes it possible to predict development course disease, and also has a serious potential for assessing rehabilitation opportunities. Obtaining such data helps to improve the construction diagnostic models, optimizes therapeutic and diagnostic algorithm. The purpose of this publication is to analyze and systematize data available in the literature use fMRI in elderly patients with impaired cognitive functions in cerebrovascular pathology and Alzheimer's disease.
About the authors
Anna M. Tantasheva
Almazov National Medical Research Centre
Email: sergiognezdo@yandex.ru
ORCID iD: 0000-0003-4149-0029
Neurologist
Russian Federation, Saint PetersburgSergey V. Vorobyev
Almazov National Medical Research Centre; Saint Petersburg State Pediatric Medical University
Author for correspondence.
Email: sergiognezdo@yandex.ru
ORCID iD: 0000-0002-4830-907X
D. Sci. (Med.)
Russian Federation, Saint Petersburg; Saint PetersburgStanislav N. Yanishevskiy
Almazov National Medical Research Centre
Email: sergiognezdo@yandex.ru
ORCID iD: 0000-0002-6484-286X
D. Sci. (Med.), Assoc. Prof.
Russian Federation, Saint PetersburgAleksandr Y. Efimtsev
Almazov National Medical Research Centre
Email: sergiognezdo@yandex.ru
D. Sci. (Med.)
Russian Federation, Saint PetersburgAndrey V. Sokolov
Almazov National Medical Research Centre; Kirov Military Medical Academy
Email: sergiognezdo@yandex.ru
ORCID iD: 0000-0003-0685-5109
Radiologist
Russian Federation, Saint Petersburg; Saint PetersburgIvan K. Ternovykh
Almazov National Medical Research Centre
Email: sergiognezdo@yandex.ru
ORCID iD: 0000-0002-0074-4021
Assistant
Russian Federation, Saint PetersburgMaria S. Antusheva
Almazov National Medical Research Centre
Email: sergiognezdo@yandex.ru
ORCID iD: 0000-0002-4456-0398
Student
Russian Federation, Saint PetersburgKamila S. Seitkazina
Almazov National Medical Research Centre
Email: sergiognezdo@yandex.ru
ORCID iD: 0000-0001-6772-7018
Clinical Resident
Russian Federation, Saint PetersburgKristina M. Shubina
Almazov National Medical Research Centre
Email: sergiognezdo@yandex.ru
ORCID iD: 0000-0002-7336-3860
Graduate Student
Russian Federation, Saint PetersburgReferences
- Яхно Н.Н., Захаров В.В., Локшина А.Б., и др. Деменции. М.: МЕДпресс-информ, 2011 [Iakhno NN, Zakharov VV, Lokshina AB, et al. Dementsii. Moscow: MEDpress-inform, 2011 (in Russian)].
- Апчел В.Я., Цыган В.Н. Память и внимание – интеграторы психики. СПб.: Логос, 2004 [Apchel VIa, Tsygan VN. Pamiat' i vnimanie – integratory psikhiki. Saint Petersburg: Logos, 2004 (in Russian)].
- Баулина М.Е. Нейропсихология. М.: ВЛАДОС, 2018 [Baulina ME. Neiropsikhologiia. Moscow: VLADOS, 2018 (in Russian)].
- Хомская Е.Д. Нейропсихология. СПб.: Питер, 2005 [Khomskaia ED. Neiropsikhologiia. Saint Petersburg: Piter, 2005 (in Russian)].
- Выготский Л.С. Развитие высших психических функций. М.: Изд-во Акад. пед. наук РСФСР, 1960 [Vygotskii LS. Razvitie vysshikh psikhicheskikh funktsii. Moscow: Izd-vo Akad. ped. nauk RSFSR, 1960 (in Russian)].
- Лурия А.Р. Высшие корковые функции человека. М.: Изд. МГУ, 1962 [Luriia AR. Vysshie korkovye funktsii cheloveka. Moscow: Izd. MGU, 1962 (in Russian)].
- Буккиева Т.А., Чегина Д.С., Ефимцев А.Ю., и др. Функциональная МРТ покоя. Общие вопросы и клиническое применение. Российский электронный журнал лучевой диагностики. 2019;9(2):150-70 [Bukkieva TA, Chegina DS, Efimtsev AYu, et al. Functional resting MRI. General issues and clinical application. Russian Electronic Journal of Radiology. 2019;9(2):150-70 (in Russian)]. doi: 10.21569/2222-7415- 2019-9-2-150-170
- Кремнева Е.И., Синицын Д.О., Добрынина Л.А., и др. Функциональная МРТ покоя в неврологии и психиатрии. Журнал неврологии и психиатрии им. С.С. Корсакова. 2022;122(2):5-14 [Kremneva EI, Sinitsyn DO, Dobrynina LA, et al. Resting state functional MRI in neurology and psychiatry. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(2):5-14 (in Russian)]. doi: 10.17116/jnevro20221220215
- Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA. 1990;87(24):9868-72. doi: 10.1073/pnas.87.24.9868
- Fleisher AS, Podraza KM, Bangen KJ, et al. Cerebral perfusion and oxygenation differences in Alzheimer's disease risk. Neurobiol Aging. 2009;30(11):1737-48. doi: 10.1016/j.neurobiolaging.2008.01.012
- Одинак М.М., Воробьев С.В., Фокин В.А., и др. Функциональная магнитно-резонансная томография как метод оценки состояния когнитивных функций. Вестник Российской военно-медицинской академии. 2011;4(36):7-13 [Odinak MM, Vorob'ev SV, Fokin VA, et al. Functional magnetic resonance imaging as a method of assessing the state of cognitive functions. Bulletin of the Russian Military Medical Academy. 2011;4 (36):7-13 (in Russian)].
- Селивёрстов Ю.А., Селивёрстова Е.В., Коновалов Р.Н., и др. Функциональная магнитно-резонансная томография покоя: возможности и будущее метода. Бюллетень Национального общества по изучению болезни Паркинсона и расстройств движений. 2014;1:16-9 [Seliverstov IuA, Seliverstova EV, Konovalov RN, et al. Funktsional'naia magnitno-rezonansnaia tomografiia pokoia: vozmozhnosti i budushchee metoda. Biulleten' Natsional'nogo obshchestva po izucheniiu bolezni Parkinsona i rasstroistv dvizhenii. 2014;1:16-9 (in Russian)].
- Дмитриев А.Ю., Дашьян В.Г. Функциональная магнитно-резонансная томография в нейрохирургии. Журнал неврологии и психиатрии им. С.С. Корсакова. 2021;121(7):118-23 [Dmitriev AYu, Dash'yan VG. Functional magnetic resonance imaging in neurosurgery. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;12(7):118-23 (in Russian)]. doi: 10.17116/jnevro2021121071118
- Liu M, Wang Y, Zhang H, et al. Multiscale functional connectome abnormality predicts cognitive outcomes in subcortical ischemic vascular disease. Cereb Cortex. 2022;32(21):4641-66. doi: 10.1093/cercor/bhab507
- Grieder M, Wang DJJ, Dierks T, et al. Default Mode Network Complexity and Cognitive Decline in Mild Alzheimer's Disease. Front Neurosci. 2018;12:770. doi: 10.3389/fnins.2018.00770
- Andrews-Hanna JR. The brain's default network and its adaptive role in internal mentation. Neuroscientist. 2012;18(3):251-70. doi: 10.1177/1073858411403316
- Tuladhar AM, Snaphaan L, Shumskaya E, et al. Default Mode Network Connectivity in Stroke Patients. PLoS One. 2013;8(6):e66556. doi: 10.1371/journal.pone.0066556
- Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15(10):483-506. doi: 10.1016/j.tics.2011.08.003
- Ma J, Liu F, Wang Y, et al. Frequency-dependent white-matter functional network changes associated with cognitive deficits in subcortical vascular cognitive impairment. Neuroimage Clin. 2022;36:103245. doi: 10.1016/j.nicl.2022.103245
- Dunet V, Deverdun J, Charroud C, et al. Cognitive Impairment and Basal Ganglia Functional Connectivity in Vascular Parkinsonism. AJNR Am J Neuroradiol. 2016;37(12):2310-36. doi: 10.3174/ajnr.A4889
- Ye Q, Bai F. Contribution of diffusion, perfusion and functional MRI to the disconnection hypothesis in subcortical vascular cognitive impairment. Stroke Vasc Neurol. 2018;3(3):131-3. doi: 10.1136/svn-2017-000080
- Wang C, Miao P, Liu J, et al. Validation of cerebral blood flow connectivity as imaging prognostic biomarker on subcortical stroke. J Neurochem. 2021;159(1):172-84. doi: 10.1111/jnc.15359
- Jung J, Laverick R, Nader K, et al. Altered hippocampal functional connectivity patterns in patients with cognitive impairments following ischaemic stroke: A resting-state fMRI study. Neuroimage Clin. 2021;32:102742. doi: 10.1016/j.nicl.2021.102742
- Wang T, Mantini D, Gillebert CR. The potential of real-time fMRI neurofeedback for stroke rehabilitation: A systematic review. Cortex. 2018;107:148-65. doi: 10.1016/j.cortex.2017.09.006
- Dodd KC, Nair VA, Prabhakaran V. Role of the Contralesional vs. Ipsilesional Hemisphere in Stroke Recovery. Front Hum Neurosci. 2017;11:469. doi: 10.3389/fnhum.2017.00469
- Crofts A, Kelly ME, Gibson CL. Imaging Functional Recovery Following Ischemic Stroke: Clinical and Preclinical fMRI Studies. J Neuroimaging. 2020;30(1):5-14. doi: 10.1111/jon.12668
- Griffanti L, Dipasquale O, Laganà MM, et al. Effective artifact removal in resting state fMRI data improves detection of DMN functional connectivity alteration in Alzheimer's disease. Front Hum Neurosci. 2015;9:449. doi: 10.3389/fnhum.2015.00449
- Liao ZL, Tan YF, Qiu YJ, et al. Interhemispheric functional connectivity for Alzheimer's disease and amnestic mild cognitive impairment based on the triple network model. J Zhejiang Univ Sci B. 2018;19(12):924-34. doi: 10.1631/jzus.B1800381
- Uddin LQ, Yeo BTT, Spreng RN. Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks. Brain Topogr. 2019;32(6):926-42. doi: 10.1007/s10548-019-00744-6
- Contreras JA, Avena-Koenigsberger A, Risacher SL, et al. Resting state network modularity along the prodromal late onset Alzheimer's disease continuum. Neuroimage Clin. 2019;22:101687. doi: 10.1016/j.nicl.2019.101687
- Hojjati SH, Ebrahimzadeh A, Babajani-Feremi A. Identification of the Early Stage of Alzheimer's Disease Using Structural MRI and Resting-State fMRI. Front Neurol. 2019;10:904. doi: 10.3389/fneur.2019.00904
- Millar PR, Ances BM, Gordon BA, et al. Evaluating resting-state BOLD variability in relation to biomarkers of preclinical Alzheimer's disease. Neurobiol Aging. 2020;96:233-45. doi: 10.1016/j.neurobiolaging.2020.08.007
- Liang L, Zhao L, Wei Y, et al. Structural and Functional Hippocampal Changes in Subjective Cognitive Decline From the Community. Front Aging Neurosci. 2020;12:64. doi: 10.3389/fnagi.2020.00064
- Kazemifar S, Manning KY, Rajakumar N, et al. Spontaneous low frequency BOLD signal variations from resting-state fMRI are decreased in Alzheimer disease. PLoS One. 2017;12(6):e0178529. doi: 10.1371/journal.pone.0178529
- Zhou Y, Yu F, Duong TQ, Alzheimer's Disease Neuroimaging Initiative. White matter lesion load is associated with resting state functional MRI activity and amyloid PET but not FDG in mild cognitive impairment and early Alzheimer's disease patients. J Magn Reson Imaging. 2015;41(1):102-9. doi: 10.1002/jmri.24550
Supplementary files

