Sensorimotor integration in health and after stroke
- Authors: Damulin I.V1
-
Affiliations:
- I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation
- Issue: Vol 20, No 2 (2018)
- Pages: 63-68
- Section: Articles
- URL: https://journal-vniispk.ru/2075-1753/article/view/95022
- DOI: https://doi.org/10.26442/2075-1753_2018.2.63-68
- ID: 95022
Cite item
Full Text
Abstract
Full Text
##article.viewOnOriginalSite##About the authors
I. V Damulin
I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation
Email: damulin@mmascience.ru
д-р мед. наук, проф. каф. нервных болезней и нейрохирургии 119991, Russian Federation, Moscow, ul. Trubetskaia, d. 8, str. 2
References
- Glencross D.J. Motor control and sensory-motor integration. In: Motor Control and Sensory Motor Integration: Issues and Directions. Advances in Psychology. D.J Gleneross, J.P Piek (eds.). Ch.1. New York: Elsevier Science, 1995; p. 3-7.
- Lappe M. Information transfer between sensory and motor networks. In: Handbook of Biological Physics. F Moss, S Gielen (eds.). Vol. 4. Ch. 23. Amsterdam etc.: Elsevier Science, 2001; p. 1001-41.
- Piek J.P, Barrett N.C. Perspectives on motor control and sensory-motor integration. In: Motor Control and Sensory Motor Integration: Issues and Directions. Advances in Psychology. DJ Gleneross, J.P Piek (eds.). Ch.16. New York: Elsevier Science, 1995; p. 411-9.
- Kaas J.H. Functional implications of plasticity and reorganizations in the somatosensory and motor systems of developing and adult primates. In: The Somatosensory System. Deciphering the Brain’s Own Body Image. Ed. by RJ Nelson. Ch.14. Boca Raton etc: CRC Press, 2002; p. 375-89.
- Kaas J.H, Jain N, Qi H-X. The organization of the somatosensory system in primates. In: The Somatosensory System. Deciphering the Brain’s Own Body Image. Ed. by RJ Nelson. Ch.1. Boca Raton etc.: CRC Press, 2002; p. 18-42.
- Nunez A, Malmierca E. Corticofugal Modulation of Sensory Information. Berlin, Heidelberg: Springer-Verlag, 2007.
- Burton H. Cerebral cortical regions devoted to the somatosensory system: results from brain imaging studies in humans. In: The Somatosensory System. Deciphering the Brain’s Own Body Image. Ed. by R.J Nelson. Ch.2. Boca Raton etc.: CRC Press, 2002; p. 43-88.
- Wasaka T, Kakigi R. Sensorimotor Integration. In: Magnetoencephalography. From Signals to Dynamic Cortical Networks. S Supek, CJ Aine (eds.). Berlin, Heidelberg: Springer-Verlag, 2014; p. 727-42. https://doi.org/10.1007/978-3-642-33045-2_34
- Koziol L.F, Budding D.E, Chidekel D. Sensory integration, sensory processing, and sensory modulation disorders: putative functional neuroanatomic underpinnings. The Cerebellum 2011; 10 (4): 770-92. https://doi.org/10.1007/s12311-011-0288-8
- Yu X, Koretsky A.P. Interhemispheric plasticity protects the deafferented somatosensory cortex from functional takeover after nerve injury. Brain Connectivity 2014; 4 (9): 709-17. https://doi.org/10.1089/brain.2014.0259
- Jones C, Nelson A. Promoting plasticity in the somatosensory cortex to alter motor physiology. Translat Neurosci 2014; 5 (4): 260-8. https://doi.org/10.2478/s13380-014-0230-x
- Ostry D.J, Gribble P.L. Sensory plasticity in human motor learning. Trends Neurosci 2016; 39 (2): 114-23. https://doi.org/10.1016/j.tins.2015.12.006
- Hosp J.A, Luft A.R. Cortical plasticity during motor learning and recovery after ischemic stroke. Neural Plasticity 2011; 2011: 1-9. https://doi.org/10.1155/2011/871296
- Vahdat S, Darainy M, Ostry D.J. Structure of plasticity in human sensory and motor networks due to perceptual learning. J Neurosci 2014; 34 (7): 2451-63. https://doi.org/10.1523/jneurosci.4291-13.2014
- Mendelsohn A.I, Simon C.M, Abbott L.F. et al. Activity regulates the incidence of heteronymous sensory-motor connections. Neuron 2015; 87 (1): 111-23. https://doi.org/10.1016/j.neuron.2015.05.045
- Zhou L-J, Wang W, Zhao Y et al. Blood oxygenation level-dependent functional magnetic resonance imaging in early days: correlation between passive activation and motor recovery after unilateral striatocapsular cerebral infarction. J Stroke Cerebrovasc Dis 2017; 26 (11): 2652-61. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.06.036
- Lamichhane B, Dhamala M. The salience network and its functional architecture in a perceptual decision: an effective connectivity study. Brain Connectivity 2015; 5 (6): 362-70. https://doi.org/10.1089/brain.2014.0282
- Kann S, Zhang S, Manza P et al. Hemispheric lateralization of resting-state functional connectivity of the anterior insula: association with age, gender, and a novelty-seeking trait. Brain Connectivity 2016; 6 (9): 724-34. https://doi.org/10.1089/brain.2016.0443
- Killgore W.D.S, Schwab Z.J, Kipman M et al. Insomnia-related complaints correlate with functional connectivity between sensory-motor regions. Neuro Report 2013; 24 (5): 233-40. https://doi.org/10.1097/wnr.0b013e32835edbdd
- Koganemaru S, Domen K, Fukuyama H, Mima T. Negative emotion can enhance human motor cortical plasticity. Eur J Neurosci 2012; 35 (10): 1637-45. https://doi.org/10.1111/j.1460-9568.2012.08098.x
- Nakagawa K, Inui K, Kakigi R. Somatosensory System. Basic Function. In: Clinical Applications of Magnetoencephalography. S Tobimatsu, R Kakigi (eds.). Pt. III, Ch.3. Tokyo etc.: Springer 2016; p. 55-71.
- Smith M-C, Stinear C. Plasticity and motor recovery after stroke: Implications for physiotherapy. N Z J Physiother 2016; 44 (3): 166-73. https://doi.org/10.15619/nzjp/44.3.06
- Ward N.S. Using oscillations to understand recovery after stroke. Brain 2015; 138 (10): 2811-3. https://doi.org/10.1093/brain/awv265
- Dijkhuizen R.M, Zaharchuk G, Otte W.M. Assessment and modulation of resting-state neural networks after stroke. Curr Opin Neurol 2014; 27 (6): 637-43. https://doi.org/10.1097/wco.0000000000000150
- Grefkes C, Fink G.R. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain 2011; 134 (5): 1264-76. https://doi.org/10.1093/brain/awr033
- Pineiro R, Pendlebury S.T, Smith S et al. Relating MRI changes to motor deficit after ischemic stroke by segmentation of functional motor pathways. Stroke 2000; 31 (3): 672-9. https://doi.org/10.1161/01.str.31.3.672
- Thiel A, Vahdat S. Structural and resting-state brain connectivity of motor networks after stroke. Stroke 2014; 46 (1): 296-301. https://doi.org/10.1161/strokeaha.114.006307
- Van Meer M.P.A, van der Marel K, Otte W.M et al. Correspondence between altered functional and structural connectivity in the contralesional sensorimotor cortex after unilateral stroke in rats: a combined resting-state functional MRI and manganese-enhanced MRI study. J Cereb Blood Flow Metab 2010; 30 (10): 1707-11. https://doi.org/10.1038/jcbfm.2010.124
- Rehme A.K, Grefkes C. Cerebral network disorders after stroke: evidence from imaging-based connectivity analyses of active and resting brain states in humans. J Physiol 2013; 591 (1): 17-31. https://doi.org/10.1113/jphysiol.2012.243469
- Kroll H, Zaharchuk G, Christen T et al. Resting-state BOLD MRI for perfusion and ischemia. Top Magn Reson Imaging 2017; 26 (2): 91-6. https://doi.org/10.1097/rmr.0000000000000119
- Zhang Y, Li K-S, Ning Y-Z et al. Altered structural and functional connectivity between the bilateral primary motor cortex in unilateral subcortical stroke. A multimodal magnetic resonance imaging study. Medicine 2016; 95 (31): e4534. https://doi.org/10.1097/md.0000000000004534
- Staines W.R, Bolton D.A.E, McIlroy W.E. Sensorimotor control after stroke. In: The Behavioral Consequences of Stroke. T.A Schweizer, R.L Macdonald (eds.). Ch.3. New York: Springer Science, 2014; p. 37-49.
- Seitz R.J. Cerebral reorganization after sensorimotor stroke. In: Recovery after Stroke. MP Barnes, BH Dobkin, J Bogousslavsky (eds.). Ch.4. Cambridge etc.: Cambridge University Press, 2005; p. 8-123.
- Stinear C.M, Petoe M.A, Byblow W.D. Primary motor cortex excitability during recovery after stroke: implications for neuromodulation. Brain Stimulation 2015; 8 (6): 1183-90. https://doi.org/10.1016/j.brs.2015.06.015
- Zemke A.C, Heagerty P.J, Lee C, Cramer S.C. Motor cortex organization after stroke is related to side of stroke and level of recovery. Stroke 2003; 34 (5): e23-e26. https://doi.org/10.1161/01.str.0000065827.35634.5e
- Jiang L, Xu H, Yu C. Brain connectivity plasticity in the motor network after ischemic stroke. Neural Plasticity 2013; 2013: 1-11. https://doi.org/10.1155/2013/924192
- Onishi H, Kameyama S. Somatosensory System. Clinical Applications. In: Clinical Applications of Magnetoencephalography. S Tobimatsu, R Kakigi (eds.). Pt. III, Ch. 4. Tokyo etc.: Springer, 2016; p. 73-93.
- La C, Nair V.A, Mossahebi P et al. Implication of the slow-5 oscillations in the disruption of the default-mode network in healthy aging and stroke. Brain Connectivity 2016; 6 (6): 482-95. https://doi.org/10.1089/brain.2015.0375
- Toschi N, Duggento A, Passamonti L. Functional connectivity in amygdalar-sensory/(pre)motor networks at rest: new evidence from the Human Connectome Project. Eur J Neurosci 2017; 45 (9): 1224-29. https://doi.org/10.1111/ejn.13544
- Rossiter H.E, Boudrias M-H, Ward N.S. Do movement-related beta oscillations change after stroke? J Neurophysiol 2014; 112 (9): 2053-8. https://doi.org/10.1152/jn.00345.2014
- Matsuura A, Karita T, Nakada N et al. Correlation between changes of contralesional cortical activity and motor function recovery in patients with hemiparetic stroke. Physical Ther Res 2017; 20 (2): 28-35. https://doi.org/10.1298/ptr.e9911
- Veldema J, Bosl K, Nowak D.A. Motor recovery of the affected hand in subacute stroke correlates with changes of contralesional cortical hand motor representation. Neural Plastic 2017; 2017: 1-13. https://doi.org/10.1155/2017/6171903
- Ludemann-Podubecka J, Bosl K, Nowak D.A. Inhibition of the contralesional dorsal premotor cortex improves motor function of the affected hand following stroke. Eur J Neurol 2016; 23 (4): 823-30. https://doi.org/10.1111/ene.12949
- Madhavan S, Rogers L.M, Stinear J.W. A paradox: after stroke, the non-lesioned lower limb motor cortex may be maladaptive. Eur J Neurosci 2010; 32 (6): 1032-9. https://doi.org/10.1111/j.1460-9568.2010.07364.x
- Dubovik S, Pignat J-M, Ptak R et al. The behavioral significance of coherent resting-state oscillations after stroke. NeuroImage 2012; 61 (1): 249-57. https://doi.org/10.1016/j.neuroimage.2012.03.024
- Shi Z, Rogers B.P, Chen L.M et al. Realistic models of apparent dynamic changes in resting-state connectivity in somatosensory cortex. Human Brain Mapping 2016; 37 (11): 3897-910. https://doi.org/10.1002/hbm.23284
- Smitha K.A, Raja K.A, Arun K.M et al. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks. Neuroradiol J 2017; 30 (4): 305-17. https://doi.org/10.1177/1971400917697342
- Amemiya S, Kunimatsu A, Saito N, Ohtomo K. Cerebral hemodynamic impairment: assessment with resting-state functional MR imaging. Radiology 2014; 270 (2): 548-55. https://doi.org/10.1148/radiology.13130982
- Thompson G.J. Neural and metabolic basis of dynamic resting state fMRI. NeuroImage 2017 (Sept.): 1-63. https://doi.org/10.1016/j.neuroimage.2017.09.010
- Winder A.T, Echagarruga C, Zhang Q, Drew P.J. Weak correlations between hemodynamic signals and ongoing neural activity during the resting state. Nature Neuroscience 2017; 20 (12): 1761-9. https://doi.org/10.1038/s41593-017-0007-y
- Baxter B.S, Edelman B, Zhang X. et al. Simultaneous high-definition transcranial direct current stimulation of the motor cortex and motor imagery. In: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago 2014; 454-6. https://doi.org/10.1109/embc.2014.6943626
- Baxter B.S, He B. Simultaneous high-definition transcranial direct current stimulation and motor imagery acutely modulates activity in the motor cortex. Brain Stimulation 2017; 10 (1): e9. https://doi.org/10.1016/j.brs.2016.11.046
- Chen J.L, Schlaug G. Increased resting state connectivity between ipsilesional motor cortex and contralesional premotor cortex after transcranial direct current stimulation with physical therapy. Scientific Reports 2016; 6 (1): 1-7. https://doi.org/10.1038/srep23271
- Fox M.D, Halko M.A, Eldaief M.C, Pascual-Leone A. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). NeuroImage 2012; 62 (4): 2232-43. https://doi.org/10.1016/j.neuroimage.2012.03.035
- Gbadeyan O, McMahon K, Steinhauser M, Meinzer M. Stimulation of dorsolateral prefrontal cortex enhances adaptive cognitive control: a high-definition transcranial direct current stimulation study. J Neurosci 2016; 36 (50): 12530-6. https://doi.org/10.1523/jneurosci.2450-16.2016
- Keeser D. The effect of prefrontal transcranial direct current stimulation on resting state functional connectivity. Eur Psychiatry 2017; 41: S33-S34. https://doi.org/10.1016/j.eurpsy.2017.01.159
- Martin A.K, Dzafic I, Ramdave S, Meinzer M. High definition transcranial direct current stimulation over the dorsomedial prefrontal cortex increases the salience of others. Brain Stimulation 2017; 10(2): 422. https://doi.org/10.1016/j.brs.2017.01.252
- McLaughlin N.C.R, Conelea C, Blanchette B et al. Modulation of prefrontal function through transcranial direct current stimulation (tDCS). Brain Stimulation 2017; 10 (4): e37. https://doi.org/10.1016/j.brs.2017.04.062
- Nikolin S, Boonstra T.W, Loo C.K, Martin D. Prefrontal cortex transcranial direct current stimulation increases parasympathetic nerve activity. Brain Stimulation 2017; 10 (2): 432. https://doi.org/10.1016/j.brs.2017.01.286
- Pixa N.H, Steinberg F, Doppelmayr M. Influence of high-definition anodal transcranial direct current stimulation (HD-atDCS) on motor learning of a high-speed bimanual task. Brain Stimulation 2017; 10 (2): 398-99. https://doi.org/10.1016/j.brs.2017.01.182
- Worsching J, Padberg F, Helbich K et al. Test-retest reliability of prefrontal transcranial Direct Current Stimulation (tDCS) effects on functional MRI connectivity in healthy subjects. NeuroImage 2017; 155: 187-201. https://doi.org/10.1016/j.neuroimage.2017.04.052
- Besson P, Vergotte G, Muthalib M, Perrey S. Test-retest reliability of transcranial direct current stimulation-induced modulation of resting-state sensorimotor cortex oxygenation time course. Brain Stimulation 2017; 10 (2): 400. https://doi.org/10.1016/j.brs.2017.01.186
- Bachinger M, Moisa M, Polania R et al. Changing resting state connectivity measured by functional magnetic resonance imaging with transcranial alternating current stimulation. Brain Stimulation 2017; 10 (1): e5. https://doi.org/10.1016/j.brs.2016.11.033
- Lafleur L-P, Klees-Themens G, Lefebvre G et al. Connectivity and interhemispheric inhibition between motor cortices: a study with transcranial alternating current stimulation. Brain Stimulation 2017; 10 (2): 405. https://doi.org/10.1016/j.brs.2017.01.200
- Pixa N.H, Steinberg F, Doppelmayr M. High-definition transcranial direct current stimulation to both primary motor cortices improves unimanual and bimanual dexterity. Neuroscience Letters 2017; 643: 84-8. https://doi.org/10.1016/j.neulet.2017.02.033
- Saiote C, Tacchino A, Brichetto G et al. Resting-state functional connectivity and motor imagery brain activation. Human Brain Mapping 2016; 37 (11): 3847-57. https://doi.org/10.1002/hbm.23280
- Bonassi G, Biggio M, Bisio A et al. Provision of somatosensory inputs during motor imagery enhances learning-induced plasticity in human motor cortex. Scientific Reports 2017; 7 (1): 1-10. https://doi.org/10.1038/s41598-017-09597-0
- Carrasco D.G, Cantalapiedra J.A. Effectiveness of motor imagery or mental practice in functional recovery after stroke: a systematic review. Neurología (English Edition). 2016; 31 (1): 43-52. https://doi.org/10.1016/j.nrleng.2013.02.008
- Ruffino C, Papaxanthis C, Lebon F. Neural plasticity during motor learning with motor imagery practice: Review and perspectives. Neuroscience 2017; 341: 61-78. https://doi.org/10.1016/j.neuroscience.2016.11.023
- Wang L, Zhang J, Zhang Y et al. Motor cortex activation during motor imagery of the upper limbs in stroke patients. Digital Medicine 2016; 2 (2): 72-9. https://doi.org/10.4103/2226-8561.189523
Supplementary files
