COVID-ассоциированные когнитивные нарушения

Обложка

Цитировать

Полный текст

Аннотация

Пандемия COVID-19, вызванная вирусом SARS-CoV-2, началась в марте 2020 г. и продолжается по настоящее время. Вирус чаще всего поражает дыхательную систему; на сегодняшний день есть данные о возможном поражении сердца, кожи, почек, центральной нервной системы при этом заболевании. В связи с этим большой интерес представляет изучение неврологических особенностей COVID-19, в основном – развития когнитивных расстройств или усиления выраженности уже существующих когнитивных нарушений. В настоящем обзоре приводятся последние данные о взаимосвязи COVID-19 и когнитивных нарушений, предположительная этиология, патогенез и основные клинические проявления когнитивных расстройств, а также обсуждаются возможные стратегии лечения когнитивных нарушений после перенесенного COVID-19.

Об авторах

Ирина Сергеевна Преображенская

ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)

Автор, ответственный за переписку.
Email: irinasp2@yandex.ru
ORCID iD: 0000-0002-9097-898X

д-р мед. наук, проф. каф. нервных болезней и нейрохирургии ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» (Сеченовский Университет)

Россия, Москва

Список литературы

  1. Tarantola D, Dasgupta N. COVID-19 Surveillance Data: A Primer for Epidemiology and Data Science. Am J Public Health. 2021;111(4):614-9. doi: 10.2105/AJPH.2020.306088
  2. Wu Z, McGoogan JM. Characteristics of and important lessons from the Coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese center for disease control and prevention. JAMA. 2020;323:1239-42. doi: 10.1001/jama.2020.2648
  3. Tsai ST, Lu MK, San S, Tsai CH. The neurologic manifestations of Coronavirus disease 2019 pandemic: a systemic review. Front Neurol. 2020;11:498. doi: 10.3389/fneur.2020.00498
  4. Pinzon RT, Wijaya VO, Buana RB, et al. Neurologic characteristics in Coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. Front Neurol. 2020;11:565. doi: 10.3389/fneur.2020.00565
  5. Pajo AT, Espiritu AI, Apor ADAO, Jamora RDG. Neuropathologic findings of patients with COVID-19: a systematic review. Neurol Sci. 2021;42(4):1255-66. doi: 10.1007/s10072-021-05068-7
  6. Kantonen J, Mahzabin S, Mäyränpää MI, et al. Neuropathologic features of four autopsied COVID-19 patients. Brain Pathol. 2020;30(6):1012-6. doi: 10.1111/bpa.12889
  7. Fabbri VP, Foschini MP, Lazzarotto T, et al. Brain ischemic injury in COVID-19-infected patients: a series of 10 post-mortem cases. Brain Pathol. 2021;31(1):205-10. doi: 10.1111/bpa.12901
  8. Solomon IH, Normandin E, Bhattacharyya S, et al. Neuropathological Features of COVID-19. N Engl J Med. 2020;383(10):989. doi: 10.1056/NEJMc2019373
  9. Matschke J, Lütgehetmann M, Hagel C, et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020;19(11):919-29. doi: 10.1016/S1474-4422(20)30308-2
  10. Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415-24. doi: 10.1084/jem.20050828
  11. Bodro M, Compta Y, Sánchez-Valle R. Presentations and mechanisms of CNS disorders related to COVID-19. Neurol Neuroimmunol Neuroinflamm. 2021;8(1):e923. doi: 10.1212/NXI.0000000000000923
  12. Parra JED, Montoya DD, Peláez FJC. COVID-19 also Affects the Nervous System by One of its Gates: The Vascular Organ of Lamina Terminalis and the Olfactory Nerve. Neurological Alert, Dysosmia or Anosmia Test Can Help to A Quick Diagnosis. Int J Odontostomat. 2020;14(3):285-7. doi: 10.4067/S0718-381X2020000300285
  13. Jiao L, Yang Y, Yu W, et al. The olfactory route is a potential way for SARS-CoV-2 to invade the central nervous system of rhesus monkeys. Sig Transduct Target Ther. 2021;6:169. doi: 10.1038/s41392-021-00591-7
  14. Frontera JA, Boutajangout A, Masurkar AV, et al. Comparison of serum neurodegenerative biomarkers among hospitalized COVID-19 patients versus non-COVID subjects with normal cognition, mild cognitive impairment, or Alzheimer’s dementia. Alzheimer’s Dement. 2022;89(3):610-6. doi: 10.1002/alz.12556
  15. Sutter R, Hert L, De Marchis GM, et al. Serum Neurofilament Light Chain Levels in the Intensive Care Unit: Comparison between Severely Ill Patients with and without Coronavirus Disease 2019. Ann Neurol. 2021;89(3):610-6. doi: 10.1002/ana.26004
  16. Aamodt AH, Høgestøl EA, Popperud TH, et al. Blood neurofilament light concentration at admittance: a potential prognostic marker in COVID-19. J Neurol. 2021;268(10):3574-83. doi: 10.1007/s00415-021-10517-6
  17. Prudencio M, Erben Y, Marquez CP, et al. Serum neurofilament light protein correlates with unfavorable clinical outcomes in hospitalized patients with COVID-19. Sci Transl Med. 2021;13. doi: 10.1126/scitranslmed.abi7643
  18. Sun B, Tang N, Peluso MJ, et al. Characterization and Biomarker Analyses of Post-COVID-19 Complications and Neurological Manifestations. Cells. 2021;10(2):386. doi: 10.3390/cells10020386
  19. Altuna M, Sánchez-Saudinós MD, Lleó A. Cognitive symptoms after COVID-19. Neurology perspectives. 2021;1:16-24. doi: 10.1016/j.neurop.2021.10.005
  20. Vanderlind WM, Rabinovitz BB, Miao IY, et al. A systematic review of neuropsychological and psychiatric sequalae of COVID-19: implications for treatment. Curr Opin Psychiatry. 2021;34:420-33. doi: 10.1097/YCO.0000000000000713
  21. Almeria M, Cejudo JC, Sotoca J, et al. Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain Behav Immun Health. 2020;9:100163. doi: 10.1016/j.bbih.2020.100163
  22. Helms J, Kremer S, Merdji H, et al. Neurologic Features in Severe SARS-CoV-2 Infection. N Engl J Med. 2020;382(23):2268-70. doi: 10.1056/NEJMc2008597
  23. Zhou H, Lu S, Chen J, et al. The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res. 2020;129:98-102. doi: 10.1016/j.jpsychires.2020.06.022
  24. Townsend L, Dyer AH, Jones K, et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS One. 2020;15:e0240784. doi: 10.1371/journal.pone.0240784
  25. Poyiadji N, Shahin G, Noujaim D, et al. COVID-19–associated Acute Hemorrhagic Necrotizing Encephalopathy: Imaging Features. Radiology. 2020;296(2):E119-20. doi: 10.1148/radiol.2020201187
  26. Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020;94:55-8. doi: 10.1016/j.ijid.2020.03.062
  27. Oxley TJ, Mocco J, Majidi S, et al. Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young. N Engl J Med. 2020;382:e60. doi: 10.1056/NEJMc2009787
  28. Lyden P. Temporary Emergency Guidance to US Stroke Centers During the Coronavirus Disease 2019 (COVID-19) Pandemic. Stroke. 2020;51(6):1910-2. doi: 10.1161/STROKEAHA.120.030023
  29. Ntaios G, Pearce LA, Veltkamp R, et al. Potential Embolic Sources and Outcomes in Embolic Stroke of Undetermined Source in the NAVIGATE-ESUS Trial. Stroke. 2020;51(6):1797-804. doi: 10.1161/STROKEAHA.119.028669
  30. Ahmadi Karvigh S, Vahabizad F, Banihashemi G, et al. Ischemic Stroke in Patients with COVID-19 Disease: A Report of 10 Cases from Iran. Cerebrovasc Dis. 2021;50(2):239-44. doi: 10.1159/000513279
  31. Cavallieri F, Marti A, Fasano A, et al. Prothrombotic state induced by COVID-19 infection as trigger for stroke in young patients: A dangerous association. eNeurologicalSci. 2020;20:100247. doi: 10.1016/j.ensci.2020.100247
  32. Crivelli L, Palmer K, Calandri I, et al. Changes in cognitive functioning after COVID-19: A systematic review and meta-analysis. Alzheimer’s Dement. 2022;4(10):e2130645. doi: 10.1002/alz.12644
  33. Becker JH, Lin JJ, Doernberg M, et al. Assessment of Cognitive Function in Patients After COVID-19 Infection. JAMA Netw Open. 2021;4(10):e2130645. doi: 10.1001/jamanetworkopen.2021.30645
  34. Hampshire A, Trender W, Chamberlain SR, et al. Cognitive deficits in people who have recovered from COVID-19. E Clinical Medicine. 2021;39:101044. doi: 10.1016/j.eclinm.2021.101044
  35. Alonso-Lana S, Marquié M, Ruiz A, Boada M. Cognitive and Neuropsychiatric Manifestations of COVID-19 and Effects on Elderly Individuals with Dementia. Front Aging Neurosci. 2020;12:588872. doi: 10.3389/fnagi.2020.588872
  36. de Graaf MA, Antoni ML, Ter Kuile MM, et al. Short-term outpatient follow-up of COVID-19 patients: a multidisciplinary approach. E Clinical Medicine. 2021;32:100731. doi: 10.1016/j.eclinm.2021.100731
  37. Ceban F, Ling S, Lui LMW, et al. Fatigue and cognitive impairment in post-COVID-19 Syndrome: A systematic review and meta-analysis. Brain Behav Immun. 2022;101:93-135. doi: 10.1016/j.bbi.2021.12.020
  38. Stallmach A, Kesselmeier M, Bauer M, et al. Comparison of fatigue, cognitive dysfunction and psychological disorders in post-COVID patients and patients after sepsis: is there a specific constellation? Infection. 2022;46:39-48. doi: 10.1007/s15010-021-01733-3
  39. Miskowiak K, Johnsen S, Sattler S, et al. Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables. Eur Neuropsychopharmacol. 2021;46:39-48. doi: 10.1016/j.euroneuro.2021.03.019
  40. Huang C, Huang L, Wang Y, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. The Lancet. 2021;397:220-32. doi: 10.1016/S0140-6736(20)32656-8
  41. Serrano-Castro PJ, Garzón-Maldonado FJ, Casado-Naranjo I, et al. The cognitive and psychiatric subacute impairment in severe Covid-19. Sci Rep. 2022;12:3563. doi: 10.1038/s41598-022-07559-9
  42. Undurraga EA, Chowell G, Mizumoto K. COVID-19 case fatality risk by age and gender in a high testing setting in Latin America: Chile, March–August 2020. Infect Dis Poverty. 2021;10:11. doi: 10.1186/s40249-020-00785-1
  43. Goujon A, Natale F, Ghio D, et al. Age, gender, and territory of COVID-19 infections and fatalities. Luxembourg: Publications Office of the European Union, 2020. doi: 10.2760/838390
  44. Atkins JL, Masoli JAH, Delgado J, et al. Preexisting Comorbidities Predicting COVID-19 and Mortality in the UK Biobank Community Cohort. The Journals of Gerontology. 2020;75(11):2224-30. doi: 10.1093/gerona/glaa183
  45. Owolabi LF, Raafat A, Enwere OO, et al. Hemorrhagic infarctive stroke in COVID-19 patients: report of two cases and review of the literature. J Community Hosp Intern Med Perspect. 2021;11(3):322-6. doi: 10.1080/20009666.2021.1883814
  46. Nalugo M, Schulte LJ, Masood MF, Zayed MA. Microvascular Angiopathic Consequences of COVID-19. Front Cardiovasc Med. 2021;8:26. doi: 10.3389/fcvm.2021.636843
  47. Lara B, Carnes A, Dakterzada F, et al. Neuropsychiatric symptoms and quality of life in Spanish patients with Alzheimer’s disease during the COVID-19 lockdown. Eur J Neurol. 2020;27:1744-7. doi: 10.1111/ene.14339
  48. Nakamura ZM, Nash RP, Laughon SL, Rosenstein DL. Neuropsychiatric Complications of COVID-19. Curr Psychiatry Rep. 2021;23(5):25. doi: 10.1007/s11920-021-01237-9
  49. Iodice F, Cassano V, Rossini PM. Direct and indirect neurological, cognitive, and behavioral effects of COVID-19 on the healthy elderly, mild-cognitive-impairment, and Alzheimer’s disease populations. Neurol Sci. 2021;42(2):455-65. doi: 10.1007/s10072-020-04902-8
  50. Miners S, Kehoe PG, Love S. Cognitive impact of COVID-19: looking beyond the short term. Alzheimers Res Ther. 2020;12(1):170. doi: 10.1186/s13195-020-00744-w
  51. Fotuhi M, Mian A, Meysami S, Raji CA. Neurobiology of COVID-19. J Alzheimer’s Dis. 2020;76:3-19. doi: 10.3233/JAD-200581
  52. Wang F, Kream RM, Stefano GB. Long-Term Respiratory and Neurological Sequelae of COVID-19. Med Sci Monit. 2020;26(7):4016-26. doi: 10.12659/MSM.928996
  53. Kuo CL, Pilling LC, Atkins JL, et al. APOE e4 Genotype Predicts Severe COVID-19 in the UK Biobank Community Cohort. The Journals of Gerontology. 2020;75(11):2231-2. doi: 10.1093/gerona/glaa131
  54. Douaud G, Lee S, Alfaro-Almagro F, et al. Brain imaging before and after COVID-19 in UK Biobank. medRxiv Prepr Serv Heal Sci. 2021;06(11). doi: 10.1101/2021.06.11.21258690
  55. Государственный реестр лекарственных средств Минздрава России. Режим доступа: https://grls.rosminzdrav.ru. Ссылка активна на 25.03.2022. [Gosudarstvennyi reestr lekarstvennykh sredstv Minzdrava Rossii. Available at: https://grls.rosminzdrav.ru. Accessed: 25.03.2022 (in Russian)].
  56. Остроумова О.Д., Кочетков А.И., Остроумова Т.М., Клепикова М.В. Потенциал ницерголина в условиях полиморбидности и когнитивных нарушений (клинический пример). Медицинский алфавит. 2020;1(19):11-8 [Ostroumova OD, Kochetkov AI, Ostroumova TM, Klepikova MV. Potential of nicergoline in polymorbidity and cognitive impairment (clinical case). Medical alphabet. 2020;1(19):11-8 (in Russian)]. doi: 10.33667/2078-5631-2020-19-11-18
  57. Fioravanti M, Flicker L. Nicergoline for dementia and other age associated forms of cognitive impairment. Cochrane Database Syst Rev. 2001;4. doi: 10.1002/14651858.CD003159
  58. Fioravanti M, Nakashima T, Xu J, Garg A. A systematic review and meta-analysis assessing adverse event profile and tolerability of nicergoline. BMJ Open. 2014;4(7):e005090. doi: 10.1136/bmjopen-2014-005090
  59. Boulu P. Effects du Sermion® sur les troubles mn.esiques et les fonctions de la vie de relation. Tempo medical. 1990;397:24-7.
  60. Sibilio P, Bini S, Fiscon G, et al. In silico drug repurposing in COVID-19: A network-based analysis. Biomed Pharmacother. 2021;142:111954. doi: 10.1016/j.biopha.2021.111954
  61. Rose L, Graham L, Koenecke A, et al. The Association Between Alpha-1 Adrenergic Receptor Antagonists and In-Hospital Mortality From COVID-19. Front Med. 2021;8. doi: 10.3389/fmed.2021.637647
  62. Luo P, Liu D, Li J. Epinephrine use in COVID-19: friend or foe? Eur J Hosp Pharm. 2021;28(1):e1. doi: 10.1136/ejhpharm-2020-002295
  63. Navan C. Possible Drug Candidates for COVID-19. chemRxiv. 2020. Available at: https://chemrxiv.org/articles/Possible_Drug_Candidates_for_COVID-19/11985231. Accessed: 25.03.2022.
  64. Rejdak K, Karbowniczek A, Białecka M, et al. Treatment in post-COVID syndrome – nicergoline as the therapeutic potential in reduction symptoms of COVID brain fog. Medycyna Faktów. 2021;14:294-302. doi: 10.24292/01.MF.0321.12
  65. Ikemoto K. Multi-Particulate High Intensity of Brain MRI in 30’s Male Heavy Smoker Suicidal Attempt Case following Mild COVID-19 Pneumonia. Adv Case Stud. 2021;3(2):e1. doi: 10.31031/AICS.2021.03.000558

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Консилиум Медикум", 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).