Thrombotic microangiopathies: differential diagnostics and choice of treatment strategy
- Authors: Vershinina A.C.1, Vershinin P.Y.1
-
Affiliations:
- Minsk Scientific and Practical Center of Surgery, Transplantology and Hematology
- Issue: Vol 17, No 1 (2025)
- Pages: 67-75
- Section: Literature Reviews
- URL: https://journal-vniispk.ru/2075-3594/article/view/293203
- DOI: https://doi.org/10.18565/nephrology.2025.1.67-75
- ID: 293203
Cite item
Abstract
Thrombotic microangiopathies (TMAs) are a heterogeneous group of diseases with similar clinical and morphological picture, but different pathogenetic mechanisms of development and targeted approaches to treatment. TMA syndrome is characterized by a special type of vascular damage of the microcirculatory bed, which is based on endothelial damage with subsequent thrombus formation, and is manifested by the so-called thrombotic microangiopathic triad, which includes thrombocytopenia, microangiopathic hemolytic anemia and ischemic organ damage. Primary and secondary forms of TMA are distinguished. Primary TMAs include: thrombotic thrombocytopenic purpura (TTP), infection-induced TMA (STEC-HUS, SPA-HUS, virus-associated HUS), atypical hemolytic uremic syndrome (aHUS). Secondary TMAs can be associated with pregnancy, transplantation, medication, malignant arterial hypertension, oncopathology, autoimmune diseases, infections, cobalamin deficiency and account for 80-90% of all TMAs. Primary forms of TMAs are orphan diseases with a prevalence of up to 10 people per 1 million population, are characterized by a severe course and have features of pathogenetic therapy.
Verification of TMA syndrome based on the detection of thrombotic microangiopathic triad is the first stage of diagnosis of diseases of this group, and its confirmation serves as the basis for the initiation of therapy in the form of high-volume plasma exchanges (PE). The second stage of diagnostics involves verification of the etiologic diagnosis and transition to the final treatment protocol. The central place in the differential diagnostics of TMAs is the determination of the activity of metalloproteinase ADAMTS-13 in the blood plasma to exclude TTP, an urgent condition requiring the appointment of a specific treatment protocol, including PT, recombinant ADAMTS-13, immunosuppression, inhibitors of the interaction of von Willebrand factor with platelets. When TTP is excluded, further diagnostic search is based on clinical suspicion with subsequent performance of appropriate laboratory tests to verify STEC-HUS, secondary TMAs.
Atypical HUS, as a diagnosis of exclusion, refers to a severe form of TMA, which also requires a special therapeutic approach in the form of complement blocking therapy, which significantly improves survival and renal outcomes. In this case, atypical HUS should be suspected in all patients with TMA syndrome in the absence of an effect on the etiotropic, symptomatic treatment of any TMA-associated conditions.
Full Text
##article.viewOnOriginalSite##About the authors
Anna Ch. Vershinina
Minsk Scientific and Practical Center of Surgery, Transplantology and Hematology
Author for correspondence.
Email: nephrologyst.by@gmail.com
ORCID iD: 0009-0006-1945-9286
Nephrologist
Belarus, MinskPavel Yu. Vershinin
Minsk Scientific and Practical Center of Surgery, Transplantology and Hematology
Email: pavelvershinin1@gmail.com
ORCID iD: 0009-0000-3820-6563
Head of the Transplant Nephrology Department
Belarus, MinskReferences
- McFarlane P.A., Bitzan M., Broome C. et al. Making the Correct Diagnosis in Thrombotic Microangiopathy: A Narrative Review. Can. J. Kidney Health Dis. 2021;8:20543581211008707. doi: 10.1177/20543581211008707.
- Donadelli R., Sinha A., Bagga A. et al. HUS and TTP: traversing the disease and the age spectrum. Semin. Nephrol. 2023;43(4):151436. doi: 10.1016/j.semnephrol.2023.151436.
- Palma L.M.P., Meera S., Sanjeev S. Complement in Secondary Thrombotic Microangiopathy. Kidney Int. Rep. 2020;6,11–23. doi: 10.1016/j.ekir.2020.10.009.
- Merle N.S., Church S.E., Fremeaux-Bacchi V., Roumenina L.T. Complement System Part I - Molecular Mechanisms of Activation and Regulation. Front. Immunol. 2015;6:262. doi: 10.3389/fimmu.2015.00262.
- Merle N.S., Noe R., Halbwachs-Mecarelli L. et al. Complement System Part II: Role in Immunity. Front. Immunol. 2015;6:257. doi: 10.3389/fimmu.2015.00257.
- Legendre C.M., Licht C., Muus P. et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 2013;368(23):2169–81. doi: 10.1056/NEJMoa1208981.
- Fakhouri F., Hourmant M., Campistol J.M. et al. Terminal Complement Inhibitor Eculizumab in Adult Patients With Atypical Hemolytic Uremic Syndrome: A Single-Arm, Open-Label Trial. Am. J. Kidney Dis. 2016;68(1):84–93. doi: 10.1053/j.ajkd.2015.12.034.
- Галстян Г.М., Клебанова Е.Е. Диагностика тромботической тромбоцитопенической пурпуры. Тер. архив. 2020;92(12):207–17. doi: 10.26442/00403660.2020.12.200508. [Galstyan G.M., Klebanova E.E. Diagnosis of thrombotic thrombocytopenic purpura. Ther. Arch. 2020;92(12):207–17 (In Russ.)]. doi: 10.26442/00403660.2020.12.200508.
- Subhan M., Scully M. Advances in the management of TTP. Blood Reviews. 2022. doi: 10.1016/j.blre.2022.100945.
- Roose E., Bérangère S.J. Current and Future Perspectives on ADAMTS13 and Thrombotic Thrombocytopenic Purpura. Hamostaseologie.2020;40(03):322–36. doi: 10.1055/a-1171-0473.
- Noris M., Remuzzi G. J. Disease of the Month: Hemolytic Uremic Syndrome. Am. Soc. Nephrol. 2005;16(4):1035–50. doi: 10.1681/ASN.2004100861.
- Emirova Kh.M., Abaseeva T.Yu., et al. Modern Approaches to the Management of Children with Atypical Hemolytic Uremic Syndrome. Pediatr. Pharmacol. 2022;19(2):127–52 (In Russ.). doi: 10.15690/pf.v19i2.2400.
- Baiko S.V. Epidemiology and pathophysiology of hemolytic uremic syndrome associated with shiga toxin (literature review). Nephrology (Saint-Petersburg). 2021;25(3):36–42 (In Russ.). doi: 10.36485/1561-6274-2021-25-3-36-42.
- LiuY., Thaker H., Wang C. et al. Diagnosis and Treatment for Shiga Toxin-Producing Escherichia coli Associated Hemolytic Uremic Syndrome. Toxins (Basel). 2022;15(1):10. doi: 10.3390/toxins15010010.
- Jacobs L., WautersN., Lablad Y. et al. Diagnosis and Management of Catastrophic Antiphospholipid Syndrome and the Potential Impact of the 2023 ACR/EULAR Antiphospholipid Syndrome Classification Criteria. Antibodies. 2024;13(1):21. doi: 10.3390/antib13010021.
- Cole A., Ong V.H., Denton C.P. Renal Disease and Systemic Sclerosis: an Update on Scleroderma Renal Crisis. Clin. Rev. Allergy Immunol. 2023;64(3):378–91. doi: 10.1007/s12016-022-08945-x.
- Рассохин В.В., Бобровицкая Т.М. Поражения почек при ВИЧ-инфекции. Эпидемиология, подходы к классификации, основные клинические формы проявления. Часть 1. ВИЧ-инфекция и иммуносупрессии. 2018;10(1):25–36. [Rassokhin VV, Bobrovitskaya TM. Kidney lessions in HIV patients: epidemiology, approaches toclassification, and principal clinical manifestations Part 1. HIV Infection and Immunosuppressive Disorders. 2018;10(1):25–36 (In Russ.)]. doi: 10.22328/2077-9828-2018-10-1-25-36.
- Erez O., Romero R., Jung E. et al. Preeclampsia and eclampsia: the conceptual evolution of a syndrome. Am. J. Obstet. Gynecol. 2022;226(2S):S786–803. doi: 10.1016/j.ajog.2021.12.001.
- Meibody F. Jamme M., Tsatsaris V. et al. Post-partum acute kidney injury: sorting placental and non-placental thrombotic microangiopathies using the trajectory of biomarkers. Nephrol. Dial. Transplantat. 2020;35(9):1538–46. doi: 10.1093/ndt/gfz025.
- Fakhour F., Scully M., Provôt M. et al. The International Working Group on Pregnancy-Related Thrombotic Microangiopathies, Management of thrombotic microangiopathy in pregnancy and postpartum: report from an international working group. Blood. 2020;136(19):2103–17. doi: 10.1182/blood.2020005221.
- Wada H., Matsumoto T., Suzuki K. et al. Differences and similarities between disseminated intravascular coagulation and thrombotic microangiopathy. Thromb. J. 2018;16:14. doi: 10.1186/s12959-018-0168-2.
- Schwameis M., Schörgenhofer C., Assinger A. et al. VWF excess and ADAMTS13 deficiency: a unifying pathomechanism linking inflammation to thrombosis in DIC, malaria, and TTP. Thromb. Haemost. 2015;113(4): 708–18. doi: 10.1160/TH14-09-0731.
- Fuhrman D.Y., Thadani S., Hanson C. et al. Therapeutic Plasma Exchange Is Associated With Improved Major Adverse Kidney Events in Children and Young Adults With Thrombocytopenia at the Time of Continuous Kidney Replacement Therapy Initiation. Crit. Care Explor. 2023;5(4):e0891. doi: 10.1097/CCE.0000000000000891.
- Mazzierli T., Allegretta F., Maffini E. et al. Drug-induced thrombotic microangiopathy: An updated review of causative drugs, pathophysiology, and management. Front. Pharmacol. 2023;13:1088031. doi: 10.3389/fphar.2022.1088031.
- Valério P., Barreto J.P., Ferreira H. et al.Thrombotic microangiopathy in oncology – a review. Translat. Oncol. 2021;14(7):101081. ISSN 1936-5233. doi: 10.1016/j.tranon.2021.101081.
- Palacios-Acedo A.L., Mège D., Crescence L. et al. Thrombo-Inflammation, and Cancer: Collaborating With the Enemy. Front. Immunol. 2019;10:1805. doi: 10.3389/fimmu.2019.01805.
- Sharma B.K., Flick M.J., Palumbo J.S. Cancer-Associated Thrombosis: A Two-Way Street. Semin. Thromb. Hemost. 2019;45(6):559–68. doi: 10.1055/s-0039-1693472.
- Makatsariya A.D., Elalamy I., Vorobev A.V., et al. Thrombotic microangiopathy in cancer patients. Ann. Rus. Acad. Med. Sci. 2019;5:323–32 (In Russ.). doi: 10.15690/vramn1204.
- Akaeva M.I., Kozlovskaya N.L., Bobrova L.A., et al. Clinical characteristics and genetic profile of complement system in renal thrombotic microangiopathy in patients with severe forms of arterial hypertension. Ter. Arkh. 2024;96(6):571–9 (In Russ.) doi: 10.26442/00403660.2024.06.202724.
- Timmermans S.A., Wérion A., Damoiseaux J.G.M.C. et al. Diagnostic and Risk Factors for Complement Defects in Hypertensive Emergency and Thrombotic Microangiopathy. Hypertension. 2020;75(2):422–30. doi: 10.1161/HYPERTENSIONAHA.119.13714.
- Timmermans S.A., Abdul-Hamid M.A., Vanderlocht J. et al. Patients with hypertension-associated thrombotic microangiopathy may present with complement abnormalities. Kidney Int. 2017;91(6):1420–5. doi: 10.1016/j.kint.2016.12.009.
- Atkinson C., Miousse I.R., Watkins D. et al. Clinical, Biochemical, and Molecular Presentation in a Patient with the cblD-Homocystinuria Inborn Error of Cobalamin Metabolism. JIMD Rep. 2014;17:77–81. doi: 10.1007/8904_2014_340.
- Beauchamp M.H., Anderson V., Boneh A. Cognitive and social profiles in two patients with cobalamin C disease. J. Inherit. Metab. Dis. 2009; 32(Suppl. 1):S327–34. doi: 10.1007/s10545-009-1284-8.
- Huemer M., Diodato D., Schwahn B. et al. Guidelines for diagnosis and management of the cobalamin-related remethylation disorders cblC, cblD, cblE, cblF, cblG, cblJ and MTHFR deficiency. J. Inherit. Metab. Dis. 2017;40(1):21–48. doi: 10.1007/s10545-016-9991-4.
- Loupy A., Haas M., Roufosse C. et al. The Banff 2019 Kidney Meeting Report (I): Updates on and clarification of criteria for T cell- and antibody-mediated rejection. Am. J. Transplant. 2020;20(9):2318–31. doi: 10.1111/ajt.15898.
- Hsiung C.Y., Chen H.Y., Wang S.H. et al. Unveiling the Incidence and Graft Survival Rate in Kidney Transplant Recipients With De Novo Thrombotic Microangiopathy: A Systematic Review and Meta-Analysis. Transplant. Int. 2024;37:12168. doi: 10.3389/ti.2024.12168.
- Mubarak M., Raza A., Rashid R. et al. Thrombotic microangiopathy after kidney transplantation: Expanding etiologic and pathogenetic spectra. World J. Transplant. 2024;14(1):90277. doi: 10.5500/wjt.v14.i1.90277.
- Thompson G.L., Kavanagh D. Diagnosis and treatment of thrombotic microangiopathy. Int. J. Lab. Hematol. 2022;44 Suppl. 1(Suppl. 1):101–13. doi: 10.1111/ijlh.13954.
- Bobrova L.A., Kozlovskaya N.L. Lupus nephritis and thrombotic microangiopathy: A review. Ter. Arkh. 2024;96(6):628–34 (In Russ.). doi: 10.26442/00403660.2024.06.202731.
- Legendre C.M., Licht C., Muus P. et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 2013;368(23):2169–81. doi: 10.1056/NEJMoa1208981.
- Kulagin A.D., Ptushkin V.V., Lukina E.A. et al. Randomized multicenter noninferiority phase III clinical trial of the first biosimilar of eculizumab. Ann. Hematol. 2021;100(11):2689–98. doi: 10.1007/s00277-021-04624-7.
- Kulagin A., Ptushkin V., Lukina E. et al. Phase III clinical trial of Elizaria® and Soliris® in adult patients with paroxysmal nocturnal hemoglobinuria: results of comparative analysis of efficacy, safety, and pharmacological data. Blood. 2019;134(Suppl. 1):3748. doi: 10.1182/blood-2019-125693.
- Ptushkin V.V., Kulagin A.D., Lukina E.A. et al. Results of phase Ib open multicenter clinical trial of the safety, pharmacokinetics and pharmacodynamics of first biosimilar of eculizumab in untreated patients with paroxysmal nocturnal hemoglobinuria during induction of therapy. Ter. Arkh. 2020;92(7):77–84 (In Russ.). doi: 10.26442/00403660.2020.07.000818.
- Lavrishcheva I.V., Jakovenko A.A., Kudlay D.A. A case report of atypical hemolytic-uremic syndrome treatment with the first Russian eculizumab in adult patient. Urol. Nephrol. Open Access J. 2020;8(2):37–40.
- Lavrishcheva Iu.V., Jakovenko A.A., Kudlay D.A. The experience of using the Russian biosimilar of the original drug eculizumab for the treatment of patients with atypical hemolytic-uremic syndrome. Ther. Arch. 2020;92(6):76–80 (In Russ.). doi: 10.26442/00403660.2020.06.000649.
