Современные технологии изучения клеточно-молекулярных механизмов болезни Альцгеймера
- Авторы: Мухамедьяров М.А.1, Ахмадиева Л.А.1, Нагиев К.К.1, Зефиров А.Л.1
-
Учреждения:
- ФГБОУ ВО «Казанский государственный медицинский университет»
- Выпуск: Том 17, № 2 (2023)
- Страницы: 75-83
- Раздел: Технологии
- URL: https://journal-vniispk.ru/2075-5473/article/view/131732
- DOI: https://doi.org/10.54101/ACEN.2023.2.10
- ID: 131732
Цитировать
Полный текст
Аннотация
Болезнь Альцгеймера (БА) является самым распространённым нейродегенеративным заболеванием и самой частой причиной деменции. Данное заболевание характеризуется прогрессирующим угасанием когнитивных функций, связанным с развитием атрофии коры больших полушарий и гиппокампа.
В обзоре рассмотрены ключевые факторы патогенеза БА: дисфункция синапсов, накопление и агрегация β-амилоидного пептида, фосфорилирование тау-белка с формированием нейрофибриллярных клубков, митохондриальная дисфункция, нейровоспаление и др. Рассмотрено влияние дисбиоза кишечника на развитие заболевания и показано, в какой степени двусторонняя коммуникация головного мозга и кишечника позволяет переосмыслить ряд патогенетических процессов, лежащих в основе БА. Описаны современные биомедицинские технологии, применяющиеся для изучения БА: создание трансгенных моделей заболевания, электрофизиологические методы, оптогенетика, омиксные технологии, нейровизуализационные подходы и др. Применение новейших биомедицинских технологий позволило добиться значительного прогресса в расширении представлений о патогенетических механизмах БА, а также создаёт основу для разработки современных подходов к терапии данного заболевания.
Полный текст
Открыть статью на сайте журналаОб авторах
Марат Александрович Мухамедьяров
ФГБОУ ВО «Казанский государственный медицинский университет»
Автор, ответственный за переписку.
Email: marat.muhamedyarov@kazangmu.ru
ORCID iD: 0000-0002-0397-9002
д.м.н., профессор, зав. кафедрой нормальной физиологии
Россия, КазаньЛяйсан Айдаровна Ахмадиева
ФГБОУ ВО «Казанский государственный медицинский университет»
Email: annaly-nevrologii@neurology.ru
ORCID iD: 0009-0000-4926-3192
студент лечебного факультета
Россия, КазаньКерим Казбекович Нагиев
ФГБОУ ВО «Казанский государственный медицинский университет»
Email: annaly-nevrologii@neurology.ru
ORCID iD: 0009-0000-1577-9780
аспирант кафедры нормальной физиологии
Россия, КазаньАндрей Львович Зефиров
ФГБОУ ВО «Казанский государственный медицинский университет»
Email: annaly-nevrologii@neurology.ru
ORCID iD: 0000-0001-7436-7815
д.м.н., академик РАН, профессор каф. нормальной физиологии
Россия, КазаньСписок литературы
- Naseri N., Wang H., Guo J. et al. The complexity of tau in Alzheimer’s disease. Neurosci. Lett. 2019;705:183–194. doi: 10.1016/j.neulet.2019.04.022
- Patterson C. World Alzheimer report 2018. The State of the art of dementia research: new frontiers. London; 2018; 48 p.
- Ghavami S., Shojaei S., Yeganeh B. et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog. Neurobiol. 2014;112:24–49. doi: 10.1016/j.pneurobio.2013.10.004
- Eshraghi M., Adlimoghaddam A., Mahmoodzadeh A. et al. Alzheimer’s disease pathogenesis: role of autophagy and mitophagy focusing in microglia. Int. J. Mol. Sci. 2021;22(7):3330. doi: 10.3390/ijms22073330
- Laurent C., Buée L., Blum D. Tau and neuroinflammation: what impact for Alzheimer’s disease and tauopathies? Biomed. J. 2018;41(1):21–33. doi: 10.1016/j.bj.2018.01.003
- Vidal C., Zhang L. An analysis of the neurological and molecular alterations underlying the pathogenesis of Alzheimer’s disease и Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Cells. 2021;10(3):546. doi: 10.3390/cells10030546
- Tiwari S., Atluri V., Kaushik A. et al. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine. 2019;14:5541–5554. doi: 10.2147/IJN.S200490
- Xia X., Jiang Q., McDermott J., Jing-Dong J. Aging and Alzheimer’s disease: comparison and associations from molecular to system level. Aging Cell. 2018;17(5):e12802. doi: 10.1111/acel.12802
- Faux N.G., Rembach A., Wiley J. et al. An anemia of Alzheimer’s disease. Mol. Psychiatry. 2014;19(11):1227–1234. doi: 10.1038/mp.2013.178
- Татарникова О.Г., Орлов М.А., Бобкова Н.В. Бета-амилоид и тау-белок: структура, взаимодействие и прионоподобные свойства. Успехи биологической химии. 2015;55:351–390. Tatarnikova O.G., Orlov M.A., Bobkova N.V. Beta-amyloid and tau-protein: structure, interaction, and prion-like properties. Biochemistry (Mosc.). 2015;80(13):1800–1819. (In Russ.). doi: 10.1134/S000629791513012X
- Мухамедьяров М.А., Зефиров А.Л. Влияние β-амилоидного пептида на функции возбудимых тканей: физиологические и патологические аспекты. Успехи физиологических наук. 2013;44(1):55–71. Muhamedjarov M.A., Zefirov A.L. Influence of β-amyloid peptide on functions of excitable tissues: physiological and pathological aspects. Advances in physiologi- cal sciences. 2013;44(1):55–71. (In Russ.)
- Huang Y., Liu R. The toxicity and polymorphism of β-amyloid oligomers. Int. J. Mol. Sci. 2020; 21(12):4477. doi: 10.3390/ijms21124477
- d‘Errico P., Meyer-Luehmann M. Mechanisms of pathogenic tau and Aβ protein spreading in Alzheimer’s disease. Front. Aging Neurosci. 2020;12:265. doi: 10.3389/fnagi.2020.00265
- Eshraghi M., Adlimoghaddam A., Mahmoodzadeh A. et al. Alzheimer’s disease pathogenesis: role of autophagy and mitophagy focusing in microglia. Int. J. Mol. Sci. 2021;22(7):3330. doi: 10.3390/ijms22073330
- Arnsten A., Datta D., Tredici K., Braak H. Hypothesis: tau pathology is an initiating factor in sporadic Alzheimer’s disease. Alzheimer’s Dement. 2021;17:115–124. doi: 10.1002/alz.12192
- Chen J.X., Yan S.D. Amyloid-β-induced mitochondrial dysfunction. J. Alzheimers Dis. 2007;12(2):177–184.
- Chen G., Xu T., Yan Y. et al. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 2017;38(9):1205–1235. doi: 10.1038/aps.2017.28
- Perez Ortiz J.M., Swerdlow R.H. Mitochondrial dysfunction in Alzheimer’s disease: Role in pathogenesis and novel therapeutic opportunities. Br. J. Pharmacol. 2019;176(18):3489–3507. doi: 10.1111/bph.14585
- Левченкова О.С., Новиков В.Е., Пожилова Е.В. Митохондриальная пора как мишень фармакологического воздействия. Вестник Смоленской государственной медицинской академии. 2014;13(4):24–33. Levchenkova O.S., Novikov V.E., Pozhilova E.V. Mitochondrial pore as a target for pharmacological exposure. Vestnik of Smolensk State Medical Academy. 2014;13(4):24–33. (In Russ.)
- Glick D., Barth S., Macleod K.F. Autophagy: cellular and molecular mechanisms. J. Pathol. 2010;221(1):3–12. doi: 10.1002/path.2697
- Ghavami S., Shojaei S., Yeganeh B. et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog. Neurobiol. 2014;112:24–49. doi: 10.1016/j.pneurobio.2013.10.004
- Hansen D.V., Hanson J.E., Sheng M. Microglia in Alzheimer’s disease. J. Cell Biol. 2018;217(2):459–472. doi: 10.1083/jcb.201709069
- Guo S., Wang H., Yin Y. Microglia polarization from M1 to M2 in neurodegenerative diseases. Front. Aging Neurosci. 2022;14:815347. doi: 10.3389/fnagi.2022.815347
- Chew G., Petretto E. Transcriptional networks of microglia in Alzheimer’s disease and insights into pathogenesis. Genes (Basel). 2019;10(10):798. doi: 10.3390/genes10100798
- Harry G.J. Microglia during development and aging. Pharmacol. Ther. 2013;139(3):313–326. doi: 10.1016/j.pharmthera.2013.04.013
- Borst K., Dumas A.A., Prinz M. Microglia: immune and non-immune functions. Immunity. 2021;54(10):2194–2208. doi: 10.1016/j.immuni.2021.09.014
- Soteros B.M., Sia G.M. Complement and microglia dependent synapse elimination in brain development. WIREs Mech. Dis. 2022;14(3):e1545. doi: 10.1002/wsbm.1545
- Горбачёва Л.Р., Помыткин И.А., Сурин А.М. и др. Астроциты и их роль в патологии центральной нервной системы. Российский педиатрический журнал. 2018;21(1):46–53. Gorbacheva L.R., Pomytkin L.A., Surin A.M. et al. Astrocytes and their role in the pathology of the central nervous system. The Russian Pediatric Journal. 2018;21(1):46–53. (In Russ.)
- Liddelow S.A., Guttenplan K.A., Clarke L.E. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–487. doi: 10.1038/nature21029
- Cascella R., Cecchi C. Calcium dyshomeostasis in Alzheimer’s disease pathogenesis. Int. J. Mol. Sci. 2021;22(9):4914. doi: 10.3390/ijms22094914
- Wang X., Zheng W. Ca2+ homeostasis dysregulation in Alzheimer’s disease: a focus on plasma membrane and cell organelles. FASEB J. 2019;33(6):6697–6712. doi: 10.1096/fj.201801751R
- Wang W., Zhao F., Ma X. et al. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Mol. Neurodegener. 2020;15(1):30. doi: 10.1186/s13024-020-00376-6
- Sochocka M., Donskow-Łysoniewska K., Diniz B.S. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease — a critical review. Mol. Neurobiol. 2019;56(3):1841–1851. doi: 10.1007/s12035-018-1188-4
- Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693(Pt B):128–133. doi: 10.1016/j.brainres.2018.03.015
- Megur А., Baltriukienė D., Bukelskienė V. The microbiota–gut–brain axis and Alzheimer’s disease: neuroinflammation is to blame? Nutrients. 2020;24;13(1):37. doi: 10.3390/nu13010037
- Sun Y., Sommerville N.R., Liu J. Intra – gastrointestinal amyloid – β1–42 oligomers perturb enteric function and induce Alzheimer’s disease pathology. J. Physiol. 2020;598(19):4209–4223. doi: 10.1113/JP279919
- Friedland R.P., Chapman M.R. The role of microbial amyloid in neurodegene- ration. PLoS Pathog. 2017;13(12):e1006654. doi: 10.1371/journal.ppat.1006654
- Tai L.M., Weng J.M., LaDu M.J., Brady S.T. Relevance of transgenic mouse models for Alzheimer’s disease. Prog. Mol. Biol. Transl. Sci. 2021;177:1–48. doi: 10.1016/bs.pmbts.2020.07.007
- Nakai T., Yamada K., Mizoguchi H. Alzheimer’s disease animal models: elucidation of biomarkers and therapeutic approaches for cognitive impairment. Int. J. Mol. Sci. 2021;22(11):5549. doi: 10.3390/ijms22115549
- Wirths O., Zampar S. Neuron loss in Alzheimer’s Disease: translation in transgenic mouse models. Int. J. Mol. Sci. 2020;21(21):8144. doi: 10.3390/ijms21218144
- Tönnies E., Trushina E. Oxidative Stress, synaptic dysfunction, and Alzheimer’s disease. J. Alzheimers Dis. 2017;57(4):1105–1121. doi: 10.3233/JAD-161088
- Babiloni C., Blinowska K., Bonanni L. et al. What electrophysiology tells us about Alzheimer’s disease: a window into the synchronization and connectivity of brain neurons. Neurobiol. Aging. 2020;85:58–73. doi: 10.1016/j.neurobiolaging.2019.09.008
- Шуваев А.Н., Салмин В.В., Кувачева Н.В. и др. Современные тенденции в развитии метода локальной фиксации потенциала: новые возможности для нейрофармакологии и нейробиологии. Анналы клинической и экспериментальной неврологии. 2015;9(4):54–58. Shuvaev A.N., Salmin V.V., Kuvacheva N.V. et al. Modern tendencies in the development of the patch-clamp technique: new opportunities for neuropharmacology and neurobiology. Annals of clinical and experimental neurology. 2015;9(4):54–58. (In Russ.)
- Новиков Н.И., Бражник Е.С., Кичигина В.Ф. Применение опто- и хемогенетических методов для изучения двигательных нарушений при болезни Паркинсона. Современные технологии в медицине. 2019;11(2):150–163. Novikov N.I., Brazhnik E.S., Kichigina V.F. The use of optogenetic and dreadds techniques: applications to the behavioral pathology in Parkinson’s disease. Sovremennye tehnologii v medicine. 2019;11(2):150–163. (In Russ.). doi: 10.17691/stm2019.11.2.21
- Mirzayi P., Shobeiri P., Kalantari A. et al. Optogenetics: implications for Alzheimer’s disease research and therapy. Mol. Brain. 2022;15(1):20. doi: 10.1186/s13041-022-00905-y
- Lim C.H., Kaur P., Teo E. et al. Application of optogenetic Amyloid-β distinguishes between metabolic and physical damages in neurodegeneration. Elife. 2020;9:e52589. doi: 10.7554/eLife.52589
- Власова О.Л., Артамонов Д.Н., Ерофеев А.И., Безпрозванный И.Б. Применение оптогенетических подходов к исследованию электрофизиологических особенностей нейронов у мышей-моделей нейродегенеративных заболеваний. Первая Всероссийская конференция и Школа с международным участием «Оптогенетика и оптофармакология»: cборник научных трудов. СПб.; 2018:23–25. Vlasova O.L., Artamonov D.N., Erofeev A.I. Application of optogenetic approaches to the study of electrophysiological features of neurons in mouse mo-dels of neurodegenerative diseases. In: First All-Russian Conference and School with International Participation “Optogenetics and Optopharmacology”: collection of scientific papers. St. Petersburg; 2018:23–25. (In Russ.)
- Ying Y., Wang J. Illuminating neural circuits in Alzheimer’s disease. Neuro- sci. Bull. 2021;37(8):1203–1217. doi: 10.1007/s12264-021-00716-6
- Rayaprolu S., Higginbotham L., Bagchi P. et al. Systems-based proteomics to resolve the biology of Alzheimer’s disease beyond amyloid and tau. Neuropsychopharmacology. 2021;46(1):98–115. doi: 10.1038/s41386-020-00840-3
- Jung T.J., Kim Y.H., Bhalla M. et al. Genomics: new light on Alzheimer’s disease research. Int. J. Mol. Sci. 2018;19(12):3771. doi: 10.3390/ijms19123771
- Bertram L., Tanzi R.E. Genomic mechanisms in Alzheimer’s disease. Brain Pathol. 2020;30(5):966–977. doi: 10.1111/bpa.12882
- Mathys H., Davila-Velderrain J., Peng Z. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature. 2019;570(7761):332–337. doi: 10.1038/s41586-019-1195-2.
- Muñoz-Castro C., Noori A., Magdamo C.J. et al. Cyclic multiplex fluorescent immunohistochemistry and machine learning reveal distinct states of astrocytes and microglia in normal aging and Alzheimer’s disease. J. Neuroinflammation. 2022;19(1):30. doi: 10.1186/s12974-022-02383-4
- Vinters H.V. Emerging concepts in Alzheimer’s disease. Annu. Rev. Pathol. Mech. Dis. 2015;10:291–319. doi: 10.1146/annurev-pathol-020712-163927
- Reitz C., Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol. 2014;88(4):640–651. doi: h10.1016/j.bcp.2013.12.024
- Qiu S., Joshi P.S., Miller M.I. et al. Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification. Brain. 2020;143(6):1920–1933. doi: 10.1093/brain/awaa137
Дополнительные файлы
