Mitochondrial Dysfunction in the Pathogenesis of Parkinson Disease: Current Concepts and Potential Therapeutic Strategies
- Authors: Zhukova N.G.1, Kolobovnikova J.V.1, Sayfitdinkhuzhaev Z.F.1
-
Affiliations:
- Siberian State Medical University
- Issue: Vol 19, No 2 (2025)
- Pages: 74-81
- Section: Reviews
- URL: https://journal-vniispk.ru/2075-5473/article/view/310265
- DOI: https://doi.org/10.17816/ACEN.1219
- EDN: https://elibrary.ru/KHXTLY
- ID: 310265
Cite item
Abstract
Parkinson disease (PD) is a progressive extrapyramidal disorder characterized by the biodegradation of dopaminergic neurons in the substantia nigra. The total number of patients diagnosed with PD worldwide is expected to more than double by 2030, inevitably placing a significant financial burden on healthcare systems. The progression of the disease leads to persistent maladjustment in all aspects of the patient’s life, resulting in a loss of human resources. Approximately 85–90% of PD cases are sporadic and multifactorial. The remaining 10–15% are familial forms with conventional inheritance patterns. Current research suggests multiple mechanisms for PD development, but increasing evidence supports a critical role of mitochondrial dysfunction in PD pathogenesis.
The aim of this review was to discuss the key pathogenetic mechanisms of mitochondrial dysfunction in PD pathogenesis. The following keywords and phrases (both in Russian and English) were used to search databases such as eLIBRARY.RU, PubMed, and Web of Science for full-text articles in Russian and English published over the last 20 years: Parkinson disease, neurodegeneration, pathophysiology, mitochondrial dysfunction, bioenergetics, mitophagy, pathogenetic therapy.
The review describes the factors that cause mitochondrial dysfunction and its impact on PD. Potential therapeutic strategies targeting mitochondrial dysfunction are also described.
Full Text
##article.viewOnOriginalSite##About the authors
Natalia G. Zhukova
Siberian State Medical University
Email: sayfutdinxodjaev2002@gmail.com
ORCID iD: 0000-0001-6547-6622
Dr. Sci. (Med.), Professor, Professor, Department of neurology and neurosurgery
Russian Federation, 2, Moskovsky tract, Tomsk, 634050Julia V. Kolobovnikova
Siberian State Medical University
Email: sayfutdinxodjaev2002@gmail.com
ORCID iD: 0000-0001-7156-2471
Dr. Sci. (Med.), Associate Professor, Dean, Faculty of medicine and biology, Head, Department of normal physiology, Professor, Department of pathophysiology
Russian Federation, 2, Moskovsky tract, Tomsk, 634050Zaynutdinkhuzha F. Sayfitdinkhuzhaev
Siberian State Medical University
Author for correspondence.
Email: sayfutdinxodjaev2002@gmail.com
ORCID iD: 0009-0007-2184-2708
SPIN-code: 9065-3080
research assistant, Department of scientific and educational laboratory of cognitive neurophysiology of psychosomatic relationships
Russian Federation, 2, Moskovsky tract, Tomsk, 634050References
- Зарипов Н.А., Додхоев Д.С., Абдуллозода С.М., Джамолова Р.Д. Немоторные симптомы болезни Паркинсона. Вестник Авиценны. 2021;23(3):342–351. Zaripov NA, Dodxoev DS, Abdullzoda SM, Zhamalova RD. Nonmotor clinic Parkinson’s disease. Avicenna’s Bulletin. 2021;23(3):342–351. doi: 10.25005/2074-0581-2021-23-3-342-351
- Dorsey ER, Constantinescu R, Thompson JP, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68(5):384–386. doi: 10.1212/01.wnl.0000247740.47667.03
- Катунина Е.А., Бездольный Ю.Н. Эпидемиология болезни Паркинсона. Журнал неврологии и психиатрии им. С.С. Корсакова. 2013;113(12):81–88. Katunina EA, Bezdolniy YuN. Epidemiology of Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2013;113(12):81–88.
- Polito L, Greco A, Seripa D. Genetic profile, environmental exposure, and their interaction in Parkinson’s disease. Parkinsons Dis. 2016;2016:6465793. doi: 10.1155/2016/6465793
- Zaltieri M, Longhena F, Pizzi M, et al. Mitochondrial dysfunction and α-synuclein synaptic pathology in Parkinson’s disease: who’s on first? Parkinsons Dis. 2015;2015:108029. doi: 10.1155/2015/108029
- Hauser DN, Hastings TG. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis. 2013;51:35–42. doi: 10.1016/j.nbd.2012.10.011
- Esteves AR, Arduíno DM, Swerdlow RH, et al. Oxidative stress involvement in alpha-synuclein oligomerization in Parkinson’s disease cybrids. Antioxid Redox Signal. 2009;11(3):439–448. doi: 10.1089/ars.2008.2247
- Blesa J, Przedborski S. Parkinson’s disease: animal models and dopaminergic cell vulnerability. Front Neuroanat. 2014;8:155. doi: 10.3389/fnana.2014.00155
- Lindholm D, Mäkelä J, Di Liberto V, et al. Current disease modifying approaches to treat Parkinson’s disease. Cell Mol Life Sci. 2016;73(7):1365–1379. doi: 10.1007/s00018-015-2101-1
- Mustapha M, Mat Taib CN. MPTP-induced mouse model of Parkinson’s disease: a promising direction of therapeutic strategies. Bosn J Basic Med Sci. 2021;21(4):422–433. doi: 10.17305/bjbms.2020.5181
- Freire C, Koifman S. Pesticide exposure and Parkinson’s disease: epidemiological evidence of association. Neurotoxicology. 2012;33(5):947–971. doi: 10.1016/j.neuro.2012.05.011
- Inden M, Kitamura Y, Abe M, et al. Parkinsonian rotenone mouse model: reevaluation of long-term administration of rotenone in C57BL/6 mice. Biol Pharm Bull. 2011;34(1):92+96. doi: 10.1248/bpb.34.92
- Pozo Devoto VM, Falzone TL. Mitochondrial dynamics in Parkinson’s disease: a role for α-synuclein? Dis Model Mech. 2017;10(9):1075–1087. doi: 10.1242/dmm.026294
- Park JS, Davis RL, Sue CM. Mitochondrial dysfunction in Рarkinson’s disease: new mechanistic insights and therapeutic perspectives. Curr Neurol Neurosci Rep. 2018;18(5):21. doi: 10.1007/s11910-018-0829-3
- Chu Y, Goldman JG, Kelly L., et al. Abnormal alpha-synuclein reduces nigral voltage-dependent anion channel 1 in sporadic and experimental Parkinson’s disease. Neurobiol Dis. 2014;69:1–14. doi: 10.1016/j.nbd.2014.05.003
- Perfeito R, Cunha-Oliveira T, Rego AC. Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med. 2012;53(9):1791–1806. doi: 10.1016/j.freeradbiomed.2012.08.569
- Ganguly G, Chakrabarti S, Chatterjee U, Saso L. Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer’s disease and Parkinson’s disease. Drug Des Devel Ther. 2017;11:797–810. doi: 10.2147/DDDT.S130514
- Carboni E., Lingor P. Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson’s disease. Metallomics. 2015;7(3):395–404. doi: 10.1039/c4mt00339j
- Carboni E, Lingor P. Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson’s disease. Metallomics. 2015;7(3):395–404. doi: 10.1039/c4mt00339j
- Muñoz Y, Carrasco CM, Campos JD, et al. Parkinson’s disease: the mitochondria-iron link. Parkinsons Dis. 2016;2016:7049108. doi: 10.1155/2016/7049108
- Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276(5321):2045–2047. doi: 10.1126/science.276.5321.2045
- Mullin S, Schapira A. α-Synuclein and mitochondrial dysfunction in Parkinson’s disease. Mol Neurobiol. 2013;47(2):587–597. doi: 10.1007/s12035-013-8394-x
- Ryan BJ, Hoek S, Fon EA, Wade-Martins R. Mitochondrial dysfunction and mitophagy in Parkinson’s: from familial to sporadic disease. Trends Biochem Sci. 2015;40(4):200–210. doi: 10.1016/j.tibs.2015.02.003
- Guardia-Laguarta C, Area-Gomez E, Rüb C, et al. α-Synuclein is localized to mitochondria-associated ER membranes. J Neurosci. 2014;34(1):249–259. doi: 10.1523/JNEUROSCI.2507-13.2014
- Paillusson S, Gomez-Suaga P, Stoica R, et al. α-Synuclein binds to the ER-mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production. Acta Neuropathol. 2017;134(1):129–149. doi: 10.1007/s00401-017-1704-z
- Ryan SD, Dolatabadi N, Chan SF, et al. Isogenic human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction in MEF2-PGC1α transcription. Cell. 2013;155(6):1351–1364. doi: 10.1016/j.cell.2013.11.009
- Yue M, Hinkle KM, Davies P, et al. Progressive dopaminergic alterations and mitochondrial abnormalities in LRRK2 G2019S knock-in mice. Neurobiol Dis. 2015;78:172–195. doi: 10.1016/j.nbd.2015.02.031
- Reinhardt P, Schmid B, Burbulla LF, et al. Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell. 2013;12(3):354–367. doi: 10.1016/j.stem.2013.01.008
- Santos D, Esteves AR, Silva DF, et al. The Impact of mitochondrial fusion and fission modulation in sporadic Parkinson’s disease. Mol Neurobiol. 2015;52(1):573–586. doi: 10.1007/s12035-014-8893-4
- Papkovskaia TD, Chau KY, Inesta-Vaquera F, et al. G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization. Hum Mol Genet. 2012;21(19):4201–4213. doi: 10.1093/hmg/dds244
- Hsieh CH, Shaltouki A, Gonzalez AE, et al. functional impairment in Miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell. 2016;19(6):709–724. doi: 10.1016/j.stem.2016.08.002
- Vilariño-Güell C, Wider C, Ross OA, et al. VPS35 mutations in Parkinson disease. Am J Hum Genet. 2011;89(1):162–167. doi: 10.1016/j.ajhg.2011.06.001
- Zimprich A, Benet-Pagès A, Struhal W, et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet. 2011;89(1):168–175. doi: 10.1016/j.ajhg.2011.06.008
- Small SA, Petsko GA. Retromer in Alzheimer disease, Parkinson disease and other neurological disorders. Nat Rev Neurosci. 2015;16(3):126–132. doi: 10.1038/nrn3896
- Bi F, Li F, Huang C, Zhou H. Pathogenic mutation in VPS35 impairs its protection against MPP(+) cytotoxicity. Int J Biol Sci. 2013;9(2):149–155. doi: 10.7150/ijbs.5617
- Tang FL, Liu W, Hu JX, et al. VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function. Cell Rep. 2015;12(10):1631–1643. doi: 10.1016/j.celrep.2015.08.001
- Wang W, Wang X, Fujioka H, et al. Parkinson’s disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. Nat Med. 2016;22(1):54–63. doi: 10.1038/nm.3983
- Chou L, Wang W, Hoppel C, et al. Parkinson’s disease-associated pathogenic VPS35 mutation causes complex I deficits. Biochim Biophys Acta Mol Basis Dis. 2017;1863(11):2791–2795. doi: 10.1016/j.bbadis.2017.07.032
- Funayama M, Ohe K, Amo T, et al. CHCHD2 mutations in autosomal dominant late-onset Parkinson’s disease: a genome-wide linkage and sequencing study. Lancet Neurol. 2015;14(3):274–282. doi: 10.1016/S1474-4422(14)70266-2
- Aras S, Bai M, Lee I, et al. MNRR1 (formerly CHCHD2) is a bi-organellar regulator of mitochondrial metabolism. Mitochondrion. 2015;20:43–51. doi: 10.1016/j.mito.2014.10.003
- Meng H, Yamashita C, Shiba-Fukushima K, et al. Loss of Parkinson’s disease-associated protein CHCHD2 affects mitochondrial crista structure and destabilizes cytochrome c. Nat Commun. 2017;8:15500. doi: 10.1038/ncomms15500
- Tio M, Wen R, Lim YL, et al. Varied pathological and therapeutic response effects associated with CHCHD2 mutant and risk variants. Hum Mutat. 2017;38(8):978–987. doi: 10.1002/humu.23234
- Scarffe LA, Stevens DA, Dawson VL, Dawson TM. Parkin and PINK1: much more than mitophagy. Trends Neurosci. 2014;37(6):315–324. doi: 10.1016/j.tins.2014.03.004
- Pickrell AM, Youle RJ. The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron. 2015;85(2):257–273. doi: 10.1016/j.neuron.2014.12.007
- Pickrell AM, Huang CH, Kennedy S, et al. Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress. Neuron. 2015;87(2):371–381. doi: 10.1016/j.neuron.2015.06.034
- Shin JH, Ko HS, Kang H, et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell. 2011;144(5):689–702. doi: 10.1016/j.cell.2011.02.010
- Stevens DA, Lee Y, Kang HC, et al. Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration. Proc Natl Acad Sci U S A. 2015;112(37):11696–11701. doi: 10.1073/pnas.1500624112
- Lill CM. Genetics of Parkinson’s disease. Mol Cell Probes. 2016;30(6):386–396. doi: 10.1016/j.mcp.2016.11.001
- Pryde KR, Smith HL, Chau KY, Schapira AH. PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy. J Cell Biol. 2016;213(2):163–171. doi: 10.1083/jcb.201509003
- Lee Y, Stevens DA, Kang SU, et al. PINK1 Primes Parkin-mediated ubiquitination of PARIS in dopaminergic neuronal survival. Cell Rep. 2017;18(4):918–932. doi: 10.1016/j.celrep.2016.12.090
- Geisler S, Holmström KM, Skujat D, et al PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;12(2):119–131. doi: 10.1038/ncb2012
- Kondapalli C, Kazlauskaite A, Zhang N, et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2012;2(5):120080. doi: 10.1098/rsob.120080
- Kazlauskaite A, Kondapalli C, Gourlay R, et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J. 2014;460(1):127–139. doi: 10.1042/BJ20140334
- Kane LA, Lazarou M, Fogel AI, et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol. 2014;205(2):143–153. doi: 10.1083/jcb.201402104
- Lazarou M, Sliter DA, Kane LA, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015;524(7565):309–314. doi: 10.1038/nature14893
- Wang X, Winter D, Ashrafi G, et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell. 2011;147(4):893–906. doi: 10.1016/j.cell.2011.10.018
- Kostic M, Ludtmann MH, Bading H, et al. PKA phosphorylation of NCLX reverses mitochondrial calcium overload and depolarization, promoting survival of PINK1-deficient dopaminergic neurons. Cell Rep. 2015;13(2):376–386. doi: 10.1016/j.celrep.2015.08.079
- Amo T, Saiki S, Sawayama T, et al. Detailed analysis of mitochondrial respiratory chain defects caused by loss of PINK1. Neurosci Lett. 2014;580:37–40. doi: 10.1016/j.neulet.2014.07.045
- Park JS, Blair NF, Sue CM. The role of ATP13A2 in Parkinson’s disease: clinical phenotypes and molecular mechanisms. Mov Disord. 2015;30(6):770–779. doi: 10.1002/mds.26243
- Grünewald A, Arns B, Seibler P, et al. ATP13A2 mutations impair mitochondrial function in fibroblasts from patients with Kufor-Rakeb syndrome. Neurobiol Aging. 2012;33(8):1843.e1–7. doi: 10.1016/j.neurobiolaging.2011.12.035
- Ramonet D, Podhajska A, Stafa K, et al. PARK9-associated ATP13A2 localizes to intracellular acidic vesicles and regulates cation homeostasis and neuronal integrity. Hum Mol Genet. 2012;21(8):1725–1743. doi: 10.1093/hmg/ddr606
- Раrk JS, Koentjoro B, Veivers D, et al. Parkinson’s disease-associated human ATP13A2 (PARK9) deficiency causes zinc dyshomeostasis and mitochondrial dysfunction. Hum Mol Genet. 2014;23(11):2802–2815. doi: 10.1093/hmg/ddt623
- Tsunemi T, Krainc D. Zn²+ dyshomeostasis caused by loss of ATP13A2/PARK9 leads to lysosomal dysfunction and alpha-synuclein accumulation. Hum Mol Genet. 2014;23(11):2791–2801. doi: 10.1093/hmg/ddt572
- Karuppagounder SS, Brahmachari S, Lee Y, et al. The c-Abl inhibitor, nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson’s disease. Sci Rep. 2014;4:4874. doi: 10.1038/srep04874
- Dikic I, Bremm A. DUBs counteract parkin for efficient mitophagy. EMBO J. 2014;33(21):2442–2443. doi: 10.15252/embj.201490101
- Hamacher-Brady A., Brady N.R. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol Life Sci. 2016;73(4):775–795. doi: 10.1007/s00018-015-2087-8
- Koentjoro B, Park JS, Sue CM. Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson’s disease. Sci Rep. 2017;7:44373. doi: 10.1038/srep44373
- Hayashi G, Jasoliya M, Sahdeo S, et al. Dimethyl fumarate mediates Nrf2-dependent mitochondrial biogenesis in mice and humans. Hum Mol Genet. 2017;26(15):2864–2873. doi: 10.1093/hmg/ddx167
- Linker RA, Gold R. Dimethyl fumarate for treatment of multiple sclerosis: mechanism of action, effectiveness, and side effects. Curr Neurol Neurosci Rep. 2013;13(11):394. doi: 10.1007/s11910-013-0394-8
- Kaidery NA, Banerjee R, Yang L, et al. Targeting Nrf2-mediated gene transcription by extremely potent synthetic triterpenoids attenuate dopaminergic neurotoxicity in the MPTP mouse model of Parkinson’s disease. Antioxid Redox Signal. 2013;18(2):139–157. doi: 10.1089/ars.2011.4491
- Johri A, Calingasan NY, Hennessey TM, et al. Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Hum Mol Genet. 2012;21(5):1124–1137. doi: 10.1093/hmg/ddr541
- Li X, Wang H, Gao Y, et al. Quercetin induces mitochondrial biogenesis in experimental traumatic brain injury via the PGC-1α signaling pathway. Am J Transl Res. 2016;8(8):3558–3566.
Supplementary files
