Mechanisms of anticephalgic action of the vagus nerve electrostimulation: experimental study results
- Authors: Sokolov A.Y.1,2, Amelin A.V.2, Lyubashina O.A.1
-
Affiliations:
- Pavlov Institute of Physiology of the Russian Academy of Sciences
- Pavlov First Saint Petersburg State Medical University
- Issue: Vol 19, No 4 (2025)
- Pages: 93-102
- Section: Technologies
- URL: https://journal-vniispk.ru/2075-5473/article/view/380122
- DOI: https://doi.org/10.17816/ACEN.1333
- EDN: https://elibrary.ru/HUUUOC
- ID: 380122
Cite item
Abstract
Cervical or auricular vagus nerve stimulation (VNS) is an effective and safe non-pharmacological treatment for epilepsy, depression, obesity, post-stroke motor impairments, and certain types of primary headaches (HA), including migraine. This review briefly summarizes data on various VNS device models, the pathophysiology of HA, and approved neuromodulatory therapies for headache management. Experimental findings have been analyzed regarding the role of sensory nuclei of the trigeminal and vagus nerves, as well as supraspinal structures of the central nervous system, particularly the dorsal raphe nucleus and locus coeruleus, in mediating the inhibitory effects of VNS on nociceptive transmission within the trigeminothalamocortical pathway, whose hyperactivity is a key mechanism in HA pathogenesis. The review details studies using rodent migraine models, which demonstrated VNS-mediated suppression of spinal trigeminal nucleus neuronal activity and cortical spreading depression, effects achieved through neurotransmitters such as serotonin, norepinephrine, and gamma-aminobutyric acid (GABA). The mechanisms of VNS therapeutic action in HA should remain a focus of experimental and clinical research, as current evidence in this field requires further updating and validation.
About the authors
Alexey Yu. Sokolov
Pavlov Institute of Physiology of the Russian Academy of Sciences; Pavlov First Saint Petersburg State Medical University
Author for correspondence.
Email: alexey.y.sokolov@gmail.com
ORCID iD: 0000-0002-6141-486X
Dr. Sci (Med.), Assoc. Prof., senior researcher, Head, Neuropharmacology department, Valdman Institute of Pharmacology
Russian Federation, St. Petersburg; St. PetersburgAlexander V. Amelin
Pavlov First Saint Petersburg State Medical University
Email: avamelin@mail.ru
ORCID iD: 0000-0001-6437-232X
Dr. Sci (Med.), Professor, Department of neurology with a clinic, Head, Center for diagnostics and treatment of headache
Russian Federation, St. PetersburgOlga A. Lyubashina
Pavlov Institute of Physiology of the Russian Academy of Sciences
Email: laglo2009@yandex.ru
ORCID iD: 0000-0002-6296-4628
Dr. Sci (Biol.), Head, Laboratory of cortico-visceral physiology
Russian Federation, St. PetersburgReferences
- Austelle CW, Cox SS, Wills KE, Badran BW. Vagus nerve stimulation (VNS): recent advances and future directions. Clin Auton Res. 2024;34(6):529–547. doi: 10.1007/s10286-024-01065-w
- Chen Z, Liu K. Mechanism and applications of vagus nerve stimulation. Curr Issues Mol Biol. 2025;47(2):122. doi: 10.3390/cimb47020122
- Kocyigit BF, Assylbek MI, Akyol A, et al. Vagus nerve stimulation as a therapeutic option in inflammatory rheumatic diseases. Rheumatol Int. 2024;44(1):1–8. doi: 10.1007/s00296-023-05477-1
- Morais A, Chung JY, Wu L, et al. Non-invasive vagal nerve stimulation pre-treatment reduces neurological dysfunction after closed head injury in mice. Neurotrauma Rep. 2024;5(1):150–158. doi: 10.1089/neur.2023.0058
- Förster CY. Transcutaneous non-invasive vagus nerve stimulation: changing the paradigm for stroke and atrial fibrillation therapies? Biomolecules. 2024;14(12):1511. doi: 10.3390/biom14121511
- Mondal B, Choudhury S, Banerjee R, et al. Effects of non-invasive vagus nerve stimulation on clinical symptoms and molecular biomarkers in Parkinson’s disease. Front Aging Neurosci. 2024;15:1331575. doi: 10.3389/fnagi.2023.1331575
- Yan L, Li H, Qian Y, et al. Transcutaneous vagus nerve stimulation: a new strategy for Alzheimer’s disease intervention through the brain-gut-microbiota axis? Front Aging Neurosci. 2024;16:1334887. doi: 10.3389/fnagi.2024.1334887
- Hesampour F, Bernstein CN, Ghia JE. Brain-gut axis: invasive and noninvasive vagus nerve stimulation, limitations, and potential therapeutic approaches. Inflamm Bowel Dis. 2024;30(3):482–495. doi: 10.1093/ibd/izad211
- Faraji N, Payami B, Ebadpour N, Gorji A. Vagus nerve stimulation and gut microbiota interactions: a novel therapeutic avenue for neuropsychiatric disorders. Neurosci Biobehav Rev. 2025;169:105990. doi: 10.1016/j.neubiorev.2024.105990
- Bremner JD, Gazi AH, Lambert TP, et al. Noninvasive vagal nerve stimulation for opioid use disorder. Ann Depress Anxiety. 2023;10(1):1117.
- Winter Y, Sandner K, Bassetti CLA, et al. Vagus nerve stimulation for the treatment of narcolepsy. Brain Stimul. 2024;17(1):83–88. doi: 10.1016/j.brs.2024.01.002
- Wang L, Gao F, Wang Z, et al. Transcutaneous auricular vagus nerve stimulation in the treatment of disorders of consciousness: mechanisms and applications. Front Neurosci. 2023;17:1286267. doi: 10.3389/fnins.2023.1286267
- Costa V, Gianlorenço AC, Andrade MF, et al. Transcutaneous vagus nerve stimulation effects on chronic pain: systematic review and meta-analysis. Pain Rep. 2024;9(5):e1171. doi: 10.1097/PR9.0000000000001171
- Chen J, Kuang H, Chen A, et al. Transcutaneous auricular vagus nerve stimulation for managing pain: a scoping review. Pain Manag Nurs. 2025;26(1):33–39. doi: 10.1016/j.pmn.2024.11.006
- Fang YT, Lin YT, Tseng WL, et al. Neuroimmunomodulation of vagus nerve stimulation and the therapeutic implications. Front Aging Neurosci. 2023;15:1173987. doi: 10.3389/fnagi.2023.1173987
- Gerges ANH, Williams EER, Hillier S, et al. Clinical application of transcutaneous auricular vagus nerve stimulation: a scoping review. Disabil Rehabil. 2024;46(24):5730–5760. doi: 10.1080/09638288.2024.2313123
- Ma L, Wang HB, Hashimoto K. The vagus nerve: an old but new player in brain-body communication. Brain Behav Immun. 2025;124:28–39. doi: 10.1016/j.bbi.2024.11.023
- Zou N, Zhou Q, Zhang Y, et al. Transcutaneous auricular vagus nerve stimulation as a novel therapy connecting the central and peripheral systems: a review. Int J Surg. 2024;110(8):4993–5006. doi: 10.1097/JS9.0000000000001592
- Ben-Menachem E, Revesz D, Simon BJ, Silberstein S. Surgically implanted and non-invasive vagus nerve stimulation: a review of efficacy, safety and tolerability. Eur J Neurol. 2015;22(9):1260–1268. doi: 10.1111/ene.12629
- Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition. Cephalalgia. 2018;38(1):1–211. doi: 10.1177/0333102417738202
- Амелин А.В., Соколов А.Ю., Ваганова Ю.С. Мигрень. От патогенеза до лечения. М.; 2023. Amelin AV, Sokolov AYu, Vaganova YuS. Migraine. From pathogenesis to treatment. Moscow; 2023. (In Russ.)
- Ashina M, Hansen JM, Do TP, et al. Migraine and the trigeminovascular system-40 years and counting. Lancet Neurol. 2019;18(8):795–804. doi: 10.1016/S1474-4422(19)30185-1
- Bahra A. Paroxysmal hemicrania and hemicrania continua: review on pathophysiology, clinical features and treatment. Cephalalgia. 2023;43(11):3331024231214239. doi: 10.1177/03331024231214239
- Onan D, Younis S, Wellsgatnik WD, et al. Debate: differences and similarities between tension-type headache and migraine. J Headache Pain. 2023;24(1):92. doi: 10.1186/s10194-023-01614-0
- Ashina S, Mitsikostas DD, Lee MJ, et al. Tension-type headache. Nat Rev Dis Primers. 2021;7(1):24. doi: 10.1038/s41572-021-00257-2
- Repiso-Guardeño Á, Moreno-Morales N, Labajos-Manzanares MT, et al. Does tension headache have a central or peripheral origin? Current state of affairs. Curr Pain Headache Rep. 2023;27(11):801–810. doi: 10.1007/s11916-023-01179-2
- Hoffmann J, Baca SM, Akerman S. Neurovascular mechanisms of migraine and cluster headache. J Cereb Blood Flow Metab. 2019;39(4):573–594. doi: 10.1177/0271678X17733655
- Karsan N, Gosalia H, Goadsby PJ. Molecular mechanisms of migraine: nitric oxide synthase and neuropeptides. Int J Mol Sci. 2023;24(15):11993. doi: 10.3390/ijms241511993
- Frimpong-Manson K, Ortiz YT, McMahon LR, Wilkerson JL. Advances in understanding migraine pathophysiology: a bench to bedside review of research insights and therapeutics. Front Mol Neurosci. 2024;17:1355281. doi: 10.3389/fnmol.2024.1355281
- Coppola G, Abagnale C, Sebastianelli G, Goadsby PJ. Pathophysiology of cluster headache: from the trigeminovascular system to the cerebral networks. Cephalalgia. 2024;44(2):3331024231209317. doi: 10.1177/03331024231209317
- Petersen AS, Lund N, Goadsby PJ, et al. Recent advances in diagnosing, managing, and understanding the pathophysiology of cluster headache. Lancet Neurol. 2024;23(7):712–724. doi: 10.1016/S1474-4422(24)00143-1
- Goadsby PJ. Indomethacin-responsive headache disorders. Continuum (Minneap Minn). 2024;30(2):488–497. doi: 10.1212/CON.0000000000001409
- Osiowski A, Stolarz K, Baran K, et al. Indomethacin-responsive trigeminal autonomic cephalgias: a review of key characteristics and pathophysiology. Neurol Neurochir Pol. 2024;58(4):380–392. doi: 10.5603/pjnns.99747
- Соколов А.Ю., Любашина О.А., Ваганова Ю.С., Амелин А.В. Периферическая нейростимуляция в терапии головных болей. Журнал неврологии и психиатрии им. С.С. Корсакова. 2019;119(10):79–88. Sokolov AYu, Lyubashina OA, Vaganova YuS, Amelin AV. Peripheral neurostimulation in headache treatment. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(10):79–88. doi: 10.17116/jnevro201911910179
- Cocores AN, Smirnoff L, Greco G, et al. Update on neuromodulation for migraine and other primary headache disorders: recent advances and new indications. Curr Pain Headache Rep. 2025;29(1):47. doi: 10.1007/s11916-024-01314-7
- Song D, Li P, Wang Y, Cao J. Noninvasive vagus nerve stimulation for migraine: a systematic review and meta-analysis of randomized controlled trials. Front Neurol. 2023;14:1190062. doi: 10.3389/fneur.2023.1190062
- Fernández-Hernando D, Justribó Manion C, Pareja JA, et al. Effects of non-invasive neuromodulation of the vagus nerve for the management of cluster headache: a systematic review. J Clin Med. 2023;12(19):6315. doi: 10.3390/jcm12196315
- Villar-Martinez MD, Goadsby PJ. Non-invasive neuromodulation of the cervical vagus nerve in rare primary headaches. Front Pain Res (Lausanne). 2023;4:1062892. doi: 10.3389/fpain.2023.1062892
- Ruggiero DA, Underwood MD, Mann JJ, et al. The human nucleus of the solitary tract: visceral pathways revealed with an “in vitro” postmortem tracing method. J Auton Nerv Syst. 2000;79(2-3):181–190. doi: 10.1016/s0165-1838(99)00097-1
- Zerari-Mailly F, Buisseret P, Buisseret-Delmas C, Nosjean A. Trigemino-solitarii-facial pathway in rats. J Comp Neurol. 2005;487(2):176–189. doi: 10.1002/cne.20554
- Noseda R, Monconduit L, Constandil L, et al. Central nervous system networks involved in the processing of meningeal and cutaneous inputs from the ophthalmic branch of the trigeminal nerve in the rat. Cephalalgia. 2008;28(8):813–824. doi: 10.1111/j.1468-2982.2008.01588.x
- Mercante B, Ginatempo F, Manca A, et al. Anatomo-physiologic basis for auricular stimulation. Med Acupunct. 2018;30(3):141–150. doi: 10.1089/acu.2017.1254
- Henssen DJHA, Derks B, van Doorn M, et al. Vagus nerve stimulation for primary headache disorders: an anatomical review to explain a clinical phenomenon. Cephalalgia. 2019;39(9):1180–1194. doi: 10.1177/0333102419833076
- Sessle BJ. Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. Crit Rev Oral Biol Med. 2000;11(1):57–91. doi: 10.1177/10454411000110010401
- Zhang LL, Ashwell KW. The development of cranial nerve and visceral afferents to the nucleus of the solitary tract in the rat. Anat Embryol (Berl). 2001;204(2):135–151. doi: 10.1007/s004290100185
- Bohotin C, Scholsem M, Multon S, et al. Vagus nerve stimulation in awake rats reduces formalin-induced nociceptive behaviour and fos-immunoreactivity in trigeminal nucleus caudalis. Pain. 2003;101(1–2):3–12. doi: 10.1016/s0304-3959(02)00301-9
- Mørch CD, Hu JW, Arendt-Nielsen L, Sessle BJ. Convergence of cutaneous, musculoskeletal, dural and visceral afferents onto nociceptive neurons in the first cervical dorsal horn. Eur J Neurosci. 2007;26(1):142–154. doi: 10.1111/j.1460-9568.2007.05608.x
- Соколов АЮ, Игнатов ЮД. Сегментарные анатомические структуры ствола мозга, участвующие в механизмах формирования головной боли. Медицинский академический журнал. 2010;10(2):17–31. Sokolov AY, Ignatov YD. Segmental anatomical structures of the brainstem involved in the mechanisms of headache formation. Medical Academic Journal. 2010;10(2):17–31.
- Lyubashina OA, Sokolov AY, Panteleev SS. Vagal afferent modulation of spinal trigeminal neuronal responses to dural electrical stimulation in rats. Neuroscience. 2012;222:29–37. doi: 10.1016/j.neuroscience.2012.07.011
- Henssen DJHA, Derks B, van Doorn M, et al. Visualizing the trigeminovagal complex in the human medulla by combining ex-vivo ultra-high resolution structural MRI and polarized light imaging microscopy. Sci Rep. 2019;9(1):11305. doi: 10.1038/s41598-019-47855-5
- Peng KP, May A. Noninvasive vagus nerve stimulation modulates trigeminal but not extracephalic somatosensory perception: functional evidence for a trigemino-vagal system in humans. Pain. 2022;163(10):1978–1986. doi: 10.1097/j.pain.0000000000002595
- Takeda M, Tanimoto T, Ojima K, Matsumoto S. Suppressive effect of vagal afferents on the activity of the trigeminal spinal neurons related to the jaw-opening reflex in rats: involvement of the endogenous opioid system. Brain Res Bull. 1998;47(1):49–56. doi: 10.1016/s0361-9230(98)00059-8
- Tanimoto T, Takeda M, Matsumoto S. Suppressive effect of vagal afferents on cervical dorsal horn neurons responding to tooth pulp electrical stimulation in the rat. Exp Brain Res. 2002;145(4):468–479. doi: 10.1007/s00221-002-1138-1
- Bossut DF, Maixner W. Effects of cardiac vagal afferent electrostimulation on the responses of trigeminal and trigeminothalamic neurons to noxious orofacial stimulation. Pain. 1996;65(1):101–109. doi: 10.1016/0304-3959(95)00166-2
- Owens MM, Jacquemet V, Napadow V, et al. Brainstem neuronal responses to transcutaneous auricular and cervical vagus nerve stimulation in rats. J Physiol. 2024;602(16):4027–4052. doi: 10.1113/JP286680
- Nishikawa Y, Koyama N, Yoshida Y, Yokota T. Activation of ascending antinociceptive system by vagal afferent input as revealed in the nucleus ventralis posteromedialis. Brain Res. 1999;833(1):108–111. doi: 10.1016/s0006-8993(99)01521-8
- Соколов АЮ, Игнатов ЮД. Основные подкорковые структуры мозга как мишень действия препаратов для фармакотерапии первичных головных болей. Обзоры по клинической фармакологии и лекарственной терапии. 2010;8(2):13–26. Sokolov AYu, Ignatov YuD. Main subcortical brain structures as a target of action of drugs for primary headaches pharmacotherapy. Reviews on clinical pharmacology and drug therapy. 2010;8(2):13–26.
- Ruffoli R, Giorgi FS, Pizzanelli C, et al. The chemical neuroanatomy of vagus nerve stimulation. J Chem Neuroanat. 2011;42(4):288–296. doi: 10.1016/j.jchemneu.2010.12.002
- Groves DA, Bowman EM, Brown VJ. Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat. Neurosci Lett. 2005;379(3):174–179. doi: 10.1016/j.neulet.2004.12.055
- Dorr AE, Debonnel G. Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission. J Pharmacol Exp Ther. 2006;318(2):890–898. doi: 10.1124/jpet.106.104166
- Tanimoto T, Takeda M, Nishikawa T, Matsumoto S. The role of 5-hydroxytryptamine3 receptors in the vagal afferent activation-induced inhibition of the first cervical dorsal horn spinal neurons projected from tooth pulp in the rat. J Pharmacol Exp Ther. 2004;311(2):803–810. doi: 10.1124/jpet.104.070300
- Cunningham JT, Mifflin SW, Gould GG, Frazer A. Induction of c-Fos and DeltaFosB immunoreactivity in rat brain by Vagal nerve stimulation. Neuropsychopharmacology. 2008;33(8):1884–1895. doi: 10.1038/sj.npp.1301570
- Hulsey DR, Riley JR, Loerwald KW, et al. Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation. Exp Neurol. 2017;289:21–30. doi: 10.1016/j.expneurol.2016.12.005
- Akerman S, Holland PR, Hoffmann J. Pearls and pitfalls in experimental in vivo models of migraine: dural trigeminovascular nociception. Cephalalgia. 2013;33(8):577–592. doi: 10.1177/0333102412472071
- Долгорукова А.Н., Соколов А.Ю. Электрофизиологическая модель тригеминоваскулярной ноцицепции как инструмент экспериментального изучения фармакотерапии мигрени. Российский журнал боли. 2021;19(3):31–38. Dolgorukova A, Sokolov AYu. Electrophysiological model of trigeminovascular nociception as a tool for experimental study of migraine pharmacotherapy. Russian journal of pain. 2021;19(3):31–38. doi: 10.17116/pain20211903131.
- Holle-Lee D, Gaul C. Noninvasive vagus nerve stimulation in the management of cluster headache: clinical evidence and practical experience. Ther Adv Neurol Disord. 2016;9(3):230–234. doi: 10.1177/1756285616636024
- Yuan H, Silberstein SD. Vagus nerve stimulation and headache. Headache. 2017;57(1):29–33. doi: 10.1111/head.12721
- Oshinsky ML, Murphy AL, Hekierski H Jr, et al. Noninvasive vagus nerve stimulation as treatment for trigeminal allodynia. Pain. 2014;155(5):1037–1042. doi: 10.1016/j.pain.2014.02.009
- Hawkins JL, Cornelison LE, Blankenship BA, Durham PL. Vagus nerve stimulation inhibits trigeminal nociception in a rodent model of episodic migraine. Pain Rep. 2017;2(6):e628. doi: 10.1097/PR9.0000000000000628
- Cornelison LE, Woodman SE, Durham PL. Inhibition of trigeminal nociception by non-invasive vagus nerve stimulation: investigating the role of GABAergic and serotonergic pathways in a model of episodic migraine. Front Neurol. 2020;11:146. doi: 10.3389/fneur.2020.00146
- Cornelison LE, Hawkins JL, Woodman SE, Durham PL. Noninvasive vagus nerve stimulation and morphine transiently inhibit trigeminal pain signaling in a chronic headache model. Pain Rep. 2020;5(6):e881. doi: 10.1097/PR9.0000000000000881
- Chen SP, Ay I, Lopes de Morais A, et al. Vagus nerve stimulation inhibits cortical spreading depression. Pain. 2016;157(4):797–805. doi: 10.1097/j.pain.0000000000000437
- Morais A, Liu TT, Qin T, et al. Vagus nerve stimulation inhibits cortical spreading depression exclusively through central mechanisms. Pain. 2020;161(7):1661–1669. doi: 10.1097/j.pain.0000000000001856
- Liu TT, Morais A, Takizawa T, et al. Efficacy profile of noninvasive vagus nerve stimulation on cortical spreading depression susceptibility and the tissue response in a rat model. J Headache Pain. 2022;23(1):12. doi: 10.1186/s10194-022-01384-1
- Liu TT, Chen SP, Wang SJ, Yen JC. Vagus nerve stimulation inhibits cortical spreading depression via glutamate-dependent TrkB activation mechanism in the nucleus tractus solitarius. Cephalalgia. 2024;44(2):3331024241230466. doi: 10.1177/03331024241230466
- Akerman S, Simon B, Romero-Reyes M. Vagus nerve stimulation suppresses acute noxious activation of trigeminocervical neurons in animal models of primary headache. Neurobiol Dis. 2017;102:96–104. doi: 10.1016/j.nbd.2017.03.004
- Hu B, Akerman S, Goadsby PJ. Characterization of opioidergic mechanisms related to the anti-migraine effect of vagus nerve stimulation. Neuropharmacology. 2021;195:108375. doi: 10.1016/j.neuropharm.2020.108375
Supplementary files

