Экспериментальная оценка биоэквивалентности оригинальных и воспроизведенных пептидных препаратов при рассеянном склерозе


Цитировать

Полный текст

Аннотация

Рассеянный склероз – широко распространенное хроническое нейродегенеративное заболевание, которое сопровождается значительной степенью инвалидизации и требует пожизненной лекарственной терапии. В связи с этим при производстве воспроизведенных лекарственных препаратов для лечения рассеянного склероза, так называемых дженериков, актуальной задачей является обеспечение их качества на уровне оригинальных форм.

В статье представлен обзор мтодов определения сопоставимости дженериков и оригинальных препаратов для основных групп лекарственных средств, используемых для лечения рассеянного склероза: препаратов глатирамера ацетата, митоксантрона, моноклональных антител, иммуномодулирующих препаратов, препаратов на основе интерферона-β. На примере экспериментального аллергического энцефаломиелита, используемого для подтверждения специфической активности препаратов глатирамера ацетата, проведен анализ факторов, мешающих корректной оценке дженериков. Предложены подходы к стандартизации методов контроля эффективности препаратов данной группы.

Об авторах

Мария Сергеевна Рябцева

ФГБУ «Научный центр экспертизы средств медицинского применения»

Автор, ответственный за переписку.
Email: infantes@yandex.ru
Россия, Москва

Наталья П. Неугодова

ФГБУ «Научный центр экспертизы средств медицинского применения»

Email: infantes@yandex.ru
Россия, Москва

Тамара А. Батуашвили

ФГБУ «Научный центр экспертизы средств медицинского применения»

Email: infantes@yandex.ru
Россия, Москва

Людмила В. Симутенко

ФГБУ «Научный центр экспертизы средств медицинского применения»

Email: infantes@yandex.ru
Россия, Москва

Список литературы

  1. Buzzard K.A., Broadley S.A., Butzkueven H. What do effective treatments for multiple sclerosis tell us about the molecular mechanisms involved in pathogenesis? Int J Mol. Sci 2012; 13(10): 12665-12709. doi: 10.3390/ijms131012665. PMID: 23202920.
  2. Кузина Е.С. Убиквитин-независимый протеолиз основного белка миелина и его роль в развитии экспериментального аутоиммунного энцефаломиелита: дис. … канд. хим. наук. М., 2015. 113 с. http://www.chem.msu.ru/rus/theses/2015/2015-02-26-kuzina/fulltext.pdf.
  3. Teitelbaum D., Aharoni R., Sela M., Arnon R. Cross-reactions and specificities of monoclonal antibodies against myelin basic protein and against the synthetic copolymer 1. Proc Natl Acad Sci USA 1991; 88(21): 9528-9532. doi: 10.1073/pnas.88.21.9528. PMID: 1719533.
  4. Бетаферон. http://www.rlsnet.ru/tn_index_id_6393.htm
  5. Buttmann M., Rieckmann P. Interferon-beta1b in multiple sclerosis. Exp Rev Neurotherapeutics 2007; 7(3): 227–239. doi: 10.1586/14737175.7.3.227. PMID: 17341170.
  6. Kovarik P., Sauer I., Schaljo B. Molecular mechanisms of the anti-inflammatory functions of interferons. Immunobiology 2007; 212 (9–10): 895–901. doi: 10.1016/j.imbio.2007.09.011. PMID: 18086388.
  7. Feng X., Yau D., Holbrook C., Reder A.T. Type I interferons inhibit interleukin-10 production in activated human monocytes and stimulate IL-10 in T cells: implications for Th1-mediated diseases. J Interferon Cytokine Res 2002; 22(3): 311–319. doi: 10.1089/107999002753675730. PMID: 12034038.
  8. Hartung H.P., Gonsette R., König N. et al. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 2002; 360 (9350): 2018–2025. doi: 10.1016/S0140-6736(02)12023-X. PMID: 12504397.
  9. Ритуксимаб. http://www.rlsnet.ru/mnn_index_id_2695.htm.
  10. Cross A.H., Stark J.L., Lauber J. et al. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol 2006; 180(1–2): 63–70. doi: 10.1016/j.jneuroim.2006.06.029. PMID: 16904756.
  11. Ransohoff R.M. Natalizumab for multiple sclerosis. N Engl J Med 2007; 356(25): 2622–2629. doi: 10.1056/NEJMct071462. PMID: 17582072.
  12. Tanasescu R., Ionete C., Chou I.J., Constantinescu C.S. Advances in the treatment of relapsing-remitting multiple sclerosis. Biomed J 2014; 37(2): 41–49. doi: 10.4103/2319-4170.130440. PMID: 24732658.
  13. Милихина Н.В. Изучение гуморального звена специфического имунитета при экспериментальной модели рассеянного склероза – аллергического энцефаломиелита. В сб.: Научное сообщество студентов XXI столетия. Естественные науки. Матер. XXIX междунар. студ. науч.-практ. конф. Новосибирск, 2015; 3(28): 18–24.
  14. Завалишин И.А., Елисеева Д.Д. Патогенетическая терапия рассеянного склероза Лечащий врач 2009; (9): 43–46.
  15. Гусев Е.И., Демина Т.Л., Хачанова Н.В. Сравнительный анализ бета-интерферонов, используемых для лечения рассеянного склероза. Нейроиммунология 2003; (1): 45–50.
  16. Copaxone prescribing information https://www.copaxone.com/Resources/pdfs/PrescribingInformation.pdf
  17. Adamus G., Amundson D., Vainiene M. et al. Myelin basic protein specific T-helper cells induce experimental anterior uveitis. J Neurosci Res 1996; 44(6): 513–518. doi: 10.1002/(SICI)1097-4547(19960615)44:6<513::AID-JNR1>3.0.CO;2-E. PMID: 8794942.
  18. Hernández-Pedro N.Y., Espinosa-Ramirez G., de la Cruz V.P. et al. Initial immunopathogenesis of multiple sclerosis: innate immune response. Clin Dev Immunol 2013; 2013: 413465. doi: 10.1155/2013/413465. PMID: 24174969.
  19. Tsunoda I., Fujinami R.S. Two models for multiple sclerosis: experimental allergic encephalomyelitis and Theiler’s murine encephalomyelitis virus. J Neuropathol Exp Neurol 1996; 55(6): 673–686. doi: 10.1097/00005072-199606000-00001 . PMID: 8642393.
  20. Пивнева Т.А. Механизмы демиелинизации при рассеянном склерозе. Нейрофизиология 2009; 41(5): 429–437.
  21. Baker D., Jackson S.J. Models of multiple sclerosis. ACNR 2007; 6: 10-12. http://www.acnr.co.uk/JF07/ACNR_JF07_review_model.pdf
  22. Dal Canto M.C., Melvold R.W., Kim B.S., Miller S.D. Two models of multiple sclerosis: experimental allergic encephalomyelitis (EAE) and Theiler's murine encephalomyelitis virus (TMEV) infection. A pathological and immunological comparison. Microsc Res Tech 1995; 32(3): 215–229. doi: 10.1002/jemt.1070320305. PMID: 8527856.
  23. Marques A., Müller S. Mouse models of autoimmune diseases. Current Drug Discov Technol 2009; 6(4): 262–269. doi: 10.2174/157016309789869047 PMID: 20025594.
  24. Каркищенко Н.Н., Грачева С.В. (ред.) Руководство по лабораторным животным и альтернативным моделям в биомедицинских исследованиях. М.: Профиль-2С; 2010.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Ryabtseva M.S., Neugodova N.P., Batuashvili T.A., Simutenko L.V., 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».