Gut microbiota and short-chain fatty acids in the pathogenesis of necrotizing enterocolitis in very preterm infants

Capa

Citar

Resumo

The development of a symbiotic gut ecosystem is a crucial step in postnatal adaptation. The gut microbiome of very preterm infants is characterized by an overall instability, reduced microbial diversity, and a predominance of Gram-negative Proteobacteria, all factors associated with an increased risk of necrotizing enterocolitis (NEC). Short-chain fatty acids (SCFAs) are the key bacterial metabolites that are essential for maintaining intestinal homeostasis, supporting immune development, enhancing intestinal barrier integrity, and reducing inflammation. This review examines the role of gut microbiota and SCFAs in neonatal NEC, with a focus on potential diagnostic and therapeutic strategies. Clinical studies have consistently demonstrated a significant decrease in total SCFA levels and individual bacterial metabolites in preterm infants with NEC. This finding has been corroborated by various experimental models. Clarification of the role of SCFAs in NEC pathogenesis, determination of their diagnostic utility, and assessment of the feasibility of developing comprehensive pro- and postbiotic formulations require multi-center, multi-omics investigations that include a large cohort of very preterm infants.

Sobre autores

Evgenii Kukaev

National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: e_kukaev@oparina4.ru
ORCID ID: 0000-0002-8397-3574
Código SPIN: 3377-5462
Scopus Author ID: 6507367648
Researcher ID: C-9408-2014

V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Rússia, Moscow, 117997; Moscow, 119991

Alisa Tokareva

National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation

Email: a_tokareva@oparina4.ru
Código SPIN: 8552-7215
Rússia, Moscow, 117997

Olga Krogh-Jensen

National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: o_krogh@oparina4.ru
ORCID ID: 0000-0002-5178-5659
Código SPIN: 9546-0975
Scopus Author ID: 57214220453
Rússia, Moscow, 117997; Moscow, 119048

Anna Lenyushkina

National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation

Email: a-lenushkina@yandex.ru
ORCID ID: 0000-0001-8929-2991
Código SPIN: 5464-0656
Scopus Author ID: 57202802436
Researcher ID: AAJ-6896-2021
Rússia, Moscow, 117997

Nataliia Starodubtseva

National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation; Moscow Institute of Physics and Technology

Email: n_starodubtseva@oparina4.ru
ORCID ID: 0000-0001-6650-5915
Código SPIN: 3673-7263
Scopus Author ID: 50462424600
Researcher ID: Y-6378-2019
Rússia, Moscow, 117997; Dolgoprudny, Moscow region, 141701

Bibliografia

  1. Neu J, Mshvildadze M, Mai V. A roadmap for understanding and preventing necrotizing enterocolitis. Curr Gastroenterol Rep. 2008;10(5):450–457. doi: 10.1007/s11894-008-0084-x
  2. Ahearn-Ford S, Berrington JE, Stewart CJ. Development of the gut microbiome in early life. Exp Physiol. 2022;107(5):415–421. doi: 10.1113/EP089919
  3. Thänert R, Sawhney SS, Schwartz DJ, Dantas G. The resistance within: Antibiotic disruption of the gut microbiome and resistome dynamics in infancy. Cell Host Microbe. 2022;30(5):675–683. doi: 10.1016/j.chom.2022.03.013
  4. Reichardt N, Duncan SH, Young P, et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014;8(6):1323–1335. doi: 10.1038/ismej.2014.14
  5. Scheiman J, Luber JM, Chavkin TA, et al. Meta-omic analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med. 2019;25(7):1104–1109. doi: 10.1038/s41591-019-0485-4
  6. Nikitina IV, Lenyushkina AA, Krogh-Jensen OA, et al. Recurrent necrotizing enterocolitis: predictors, biological markers, diagnostic signs, and therapeutic approaches – a year-long case study. Neonatology. 2024;12(3):66–77. doi: 10.33029/2308-2402-2024-12-3-66-77
  7. Jones IH, Hall NJ. Contemporary Outcomes for Infants with Necrotizing Enterocolitis – A Systematic Review. J Pediatr. 2020;220:86–92.e3. doi: 10.1016/j.jpeds.2019.11.011
  8. Scheese DJ, Sodhi CP, Hackam DJ. New insights into the pathogenesis of necrotizing enterocolitis and the dawn of potential therapeutics. Semin Pediatr Surg. 2023;32(3):151309. doi: 10.1016/j.sempedsurg.2023.151309
  9. Zhou Q, Niño DF, Yamaguchi Y, et al. Necrotizing enterocolitis induces T lymphocyte–mediated injury in the developing mammalian brain. Sci Transl Med. 2021;13(575): eaay6621. doi: 10.1126/scitranslmed.aay6621
  10. Fullerton BS, Hong CR, Velazco CS, et al. Severe neurodevelopmental disability and healthcare needs among survivors of medical and surgical necrotizing enterocolitis: A prospective cohort study. J Pediatr Surg. 2018;53(1):101–107. doi: 10.1016/j.jpedsurg.2017.10.029
  11. Pupysheva AF, Savelyeva EI, Piskunova VV, et al. Fecal Calprotectin Levels Dynamics in Newborns with High-Risk of Necrotizing Enterocolitis. Pediatr Pharmacol. 2023;20(1):51–55. doi: 10.15690/pf.v20i1.2529
  12. Thakkar HS, Lakhoo K. Necrotizing enterocolitis. Surgery (Oxf). 2022;40(11):713–716. doi: 10.1016/j.mpsur.2022.09.007
  13. Hsu CY, Khachatryan LG, Younis NK, et al. Microbiota-derived short chain fatty acids in pediatric health and diseases: from gut development to neuroprotection. Front Microbiol. 2024;15:1456793. doi: 10.3389/fmicb.2024.1456793
  14. Facchin S, Bertin L, Bonazzi E, et al. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life (Basel). 2024;14(5):559. doi: 10.3390/life14050559
  15. He Y, Du W, Xiao S, et al. Colonization of fecal microbiota from patients with neonatal necrotizing enterocolitis exacerbates intestinal injury in germfree mice subjected to necrotizing enterocolitis-induction protocol via alterations in butyrate and regulatory T cells. J Transl Med. 2021;19(1):510. doi: 10.1186/s12967-021-03109-5
  16. Bäckhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(5):690–703. doi: 10.1016/j.chom.2015.04.004
  17. Cuna A, Morowitz MJ, Ahmed I, Umar S, Sampath V. Dynamics of the preterm gut microbiome in health and disease. Am J Physiol Gastrointest Liver Physiol. 2021;320(4):G411–G419. doi: 10.1152/ajpgi.00399.2020
  18. Yao Y, Cai X, Ye Y, Wang F, Chen F, Zheng C. The Role of Microbiota in Infant Health: From Early Life to Adulthood. Front Immunol. 2021;12:708472. doi: 10.3389/fimmu.2021.708472
  19. Olm MR, Brown CT, Brooks B, et al. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes & exhibit different in situ growth rates. Genome Res. 2017;27(4):601–612. doi: 10.1101/gr.213256.116
  20. Gibson MK, Wang B, Ahmadi S, et al. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nat Microbiol. 2016;1:16024. doi: 10.1038/nmicrobiol.2016.24
  21. Gasparrini AJ, Wang B, Sun X, et al. Metagenomic signatures of early life hospitalization and antibiotic treatment in the infant gut microbiota and resistome persist long after discharge. Nat Microbiol. 2016;4(12):2285–2297. doi: 10.1038/s41564-019-0550-2
  22. Wandro S, Osborne S, Enriquez C, Bixby C, Arrieta A, Whiteson K. The Microbiome and Metabolome of Preterm Infant Stool Are Personalized and Not Driven by Health Outcomes, Including Necrotizing Enterocolitis and Late-Onset Sepsis. mSphere. 2018;3(3):e00104–18. doi: 10.1128/msphere.00104-18
  23. Young GR, van der Gast CJ, Smith DL, Berrington JE, Embleton ND, Lanyon C. Acquisition and Development of the Extremely Preterm Infant Microbiota Across Multiple Anatomical Sites. J Pediatr Gastroenterol Nutr. 2020;70(1):12–19. doi: 10.1097/MPG.0000000000002549
  24. Patel AL, Mutlu EA, Sun Y, et al. Longitudinal Survey of Microbiota in Hospitalized Preterm Very Low Birth Weight Infants. J Pediatr Gastroenterol Nutr. 2016;62(2):292–303. doi: 10.1097/MPG.0000000000000913
  25. Stewart CJ, Embleton ND, Marrs ECL, et al. Temporal bacterial and metabolic development of the preterm gut reveals specific signatures in health and disease. Microbiome. 2016;4(1):67. doi: 10.1186/s40168-016-0216-8
  26. Unger S, Stintzi A, Shah P, Mack D, O’Connor DL. Gut microbiota of the very-low-birth-weight infant. Pediatr Res. 2015;77(1–2):205–213. doi: 10.1038/pr.2014.162
  27. Wang Y, Hoenig JD, Malin KJ, et al. 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis. ISME J. 2009;3(8):944–954. doi: 10.1038/ismej.2009.37
  28. Lemme-Dumit JM, Song Y, Lwin HW, et al. Altered Gut Microbiome and Fecal Immune Phenotype in Early Preterm Infants With Leaky Gut. Front Immunol. 2022;13:815046. doi: 10.3389/fimmu.2022.815046
  29. Torrazza RM, Ukhanova M, Wang X, et al. Intestinal microbial ecology and environmental factors affecting necrotizing enterocolitis. PLoS One. 2013;8(12):e83304. doi: 10.1371/journal.pone.0083304
  30. Liu XC, Du TT, Gao X, et al. Gut microbiota and short-chain fatty acids may be new biomarkers for predicting neonatal necrotizing enterocolitis: A pilot study. Front Microbiol. 2022;13:969656. doi: 10.3389/fmicb.2022.969656
  31. Warner PBB, Deych E, Zhou Y, et al. Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: a prospective case-control study. Lancet. 2017;387(10031):1928–1936. doi: 10.1016/S0140-6736(16)00081-7
  32. Morrow AL, Lagomarcino AJ, Schibler KR, et al. Early microbial and metabolomic signatures predict later onset of necrotizing enterocolitis in preterm infants. Microbiome. 2013;1(1):13. doi: 10.1186/2049-2618-1-13
  33. Olm MR, Bhattacharya N, Crits-Christoph A, et al. Necrotizing enterocolitis is preceded by increased gut bacterial replication, Klebsiella, and fimbriae-encoding bacteria. Sci Adv. 2019;5(12):eaax5727. doi: 10.1126/sciadv.aax5727
  34. Salzman NH, Underwood MA, Bevins CL. Paneth cells, defensins, and the commensal microbiota: A hypothesis on intimate interplay at the intestinal mucosa. Semin Immunol. 2007;19(2):70–83. doi: 10.1016/j.smim.2007.04.002
  35. Mih B, Good M. Impact of Toll-like receptor 4 signaling in necrotizing enterocolitis: The state of the science. Clin Perinatol. 2019;46(1):145–157. doi: 10.1016/j.clp.2018.09.007
  36. Healy DB, Ryan CA, Ross RP, Stanton C, Dempsey EM. Clinical implications of preterm infant gut microbiome development. Nat Microbiol. 2022;7(1):22–33. doi: 10.1038/s41564-021-01025-4
  37. Nikitina IV, Donnikov AE, Krogh-Jensen OA, et al. Genetic predictors of necrotizing enterocolitis in neonates. Akush Ginekol (Russian Fed). 2020;(12):150–158. doi: 10.18565/aig.2020.12.150-158
  38. Krogh-Jensen OA, Nikitina IV, Bragina ON, et al. Body surface cultures in preterm neonates on the first day of life: clinical usefulness. Akush Ginekol (Russian Fed). 2022;(8):108–123. doi: 10.18565/aig.2022.8.108-123
  39. Gupta S, Mortensen MS, Schjørring S, et al. Amplicon sequencing provides more accurate microbiome information in healthy children compared to culturing. Commun Biol. 2019;2:291. doi: 10.1038/s42003-019-0540-1
  40. Deurenberg RH, Bathoorn E, Chlebowicz MA, et al. Application of next generation sequencing in clinical microbiology and infection prevention. J Biotechnol. 2017;243:16–24. doi: 10.1016/j.jbiotec.2016.12.022
  41. Woo PCY, Lau SKP, Teng JLL, Tse H, Yuen KY. Then and now: Use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect. 2008;14(10):908–934. doi: 10.1111/j.1469-0691.2008.02070.x
  42. Sher Y, Olm MR, Raveh-Sadka T, et al. Combined analysis of microbial metagenomic and metatranscriptomic sequencing data to assess in situ physiological conditions in the premature infant gut. PLoS One. 2020;15(3):e0229537. doi: 10.1371/journal.pone.0229537
  43. Wishart DS, Oler E, Peters H, et al. MiMeDB: the Human Microbial Metabolome Database. Nucleic Acid Res. 2023;51(D1):D611–D620. doi: 10.1093/nar/gkac868
  44. Liu M, Lu Y, Xue G, et al. Role of short-chain fatty acids in host physiology. Animal Model Exp Med. 2024;7(5):641–652. doi: 10.1002/ame2.12464
  45. Takeuchi T, Nakanishi Y, Ohno H. Microbial Metabolites and Gut Immunology. Annu Rev Immunol. 2024;42(1):153–178. doi: 10.1146/annurev-immunol-090222-102035
  46. Martin-Gallausiaux C, Marinelli L, Blottière HM, Larraufie P, Lapaque N. SCFA: Mechanisms and functional importance in the gut. Proc Nutr Soc. 2021;80(1):37–49. doi: 10.1017/S0029665120006916
  47. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–2340. doi: 10.1194/jlr.R036012
  48. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189–200. doi: 10.1080/19490976.2015.1134082
  49. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The Role of Short-Chain Fatty Acids in Health and Disease. Adv Immunol. 2014:121:91–119. doi: 10.1016/B978-0-12-800100-4.00003-9
  50. Barcenilla A, Pryde SE, Martin JC, et al. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol. 2000;66(4):1654–1661. doi: 10.1128/AEM.66.4.1654-1661.2000
  51. Louis P, Young P, Holtrop G, Flint HJ. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ Microbiol. 2010;12(2):304–314. doi: 10.1111/j.1462-2920.2009.02066.x
  52. Turroni F, Milani C, Duranti S, Mahony J, van Sinderen D, Ventura M. Glycan Utilization and Cross-Feeding Activities by Bifidobacteria. Trends Microbiol. 2018;26(4):339–350. doi: 10.1016/j.tim.2017.10.001
  53. Liu L, Fu C, Li F. Acetate affects the process of lipid metabolism in rabbit liver, skeletal muscle and adipose tissue. Animals (Basel). 2019;9(10):799. doi: 10.3390/ani9100799
  54. Ma J, Liu Z, Gao X, et al. Gut microbiota remodeling improves natural aging-related disorders through Akkermansia muciniphila and its derived acetic acid. Pharmacol Res. 2023;189:106687. doi: 10.1016/j.phrs.2023.106687
  55. Langfeld LQ, Du K, Bereswill S, Heimesaat MM. A review of the antimicrobial and immune-modulatory properties of the gut microbiota-derived short chain fatty acid propionate – What is new? Eur J Microbiol Immunol (Bp). 2021;11(2):50–56. doi: 10.1556/1886.2021.00005
  56. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut. Front Microbiol. 2016;7:979. doi: 10.3389/fmicb.2016.00979
  57. Liu J, Zhu H, Li B, et al. Beneficial effects of butyrate in intestinal injury. J Pediatr Surg. 2020;55(6):1088–1093. doi: 10.1016/j.jpedsurg.2020.02.036
  58. Liu P, Wang Y, Yang G, et al. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol Res. 2021;165:105420. doi: 10.1016/j.phrs.2021.105420
  59. Yao L, Davidson EA, Shaikh MW, Forsyth CB, Prenni JE, Broeckling CD. Quantitative analysis of short-chain fatty acids in human plasma and serum by GC-MS. Anal Bioanal Chem. 2022;414(15):4391–4399. doi: 10.1007/s00216-021-03785-8
  60. Saha S, Day-Walsh P, Shehata E, Kroon PA. Development and validation of a lc-ms/ms technique for the analysis of short chain fatty acids in tissues and biological fluids without derivatisation using isotope labelled internal standards. Molecules. 2021;26(21):6444. doi: 10.3390/molecules26216444
  61. Garcia A, Olmo B, Lopez-Gonzalvez A, Cornejo L, Rupérez FJ, Barbas C. Capillary electrophoresis for short chain organic acids in faeces. Reference values in a Mediterranean elderly population. J Pharm Biomed Anal. 2008;46(2):356–361. doi: 10.1016/j.jpba.2007.10.026
  62. Cai J, Zhang J, Tian Y, et al. Orthogonal Comparison of GC−MS and 1 H NMR Spectroscopy for Short Chain Fatty Acid Quantitation. Anal Chem. 2017;89(15):7900–7906. doi: 10.1021/acs.analchem.7b00848
  63. Zheng J, Zheng SJ, Cai WJ, Yu L, Yuan BF, Feng YQ. Stable isotope labeling combined with liquid chromatography-tandem mass spectrometry for comprehensive analysis of short-chain fatty acids. Anal Chim Acta. 2019;1070:51–59. doi: 10.1016/j.aca.2019.04.021
  64. Hoving LR, Heijink M, van Harmelen V, van Dijk KW, Giera M. GC-MS analysis of short-chain fatty acids in feces, cecum content, and blood samples. Methods Mol Biol. 2018;1730:247–256. doi: 10.1007/978-1-4939-7592-1_17
  65. Dei Cas M, Paroni R, Saccardo A, et al. A straightforward LC-MS/MS analysis to study serum profile of short and medium chain fatty acids. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1154:121982. doi: 10.1016/j.jchromb.2020.121982
  66. Trivedi N, Erickson HE, Bala V, Chhonker YS, Murry D. A Concise Review of Liquid Chromatography-Mass Spectrometry-Based Quantification Methods for Short Chain Fatty Acids as Endogenous Biomarkers. Int J Mol Sci. 2022;23(21):13486. doi: 10.3390/ijms232113486
  67. Primec M, Mičetić-Turk D, Langerholc T. Analysis of short-chain fatty acids in human feces: A scoping review. Anal Biochem. 2017;526:9–21. doi: 10.1016/j.ab.2017.03.007
  68. Tumanov S, Bulusu V, Gottlieb E, Kamphorst JJ. A rapid method for quantifying free and bound acetate based on alkylation and GC-MS analysis. Cancer Metab. 2016;4(1):17. doi: 10.1186/s40170-016-0157-5
  69. Kim KS, Lee Y, Chae W, Cho JY. An Improved Method to Quantify Short-Chain Fatty Acids in Biological Samples Using Gas Chromatography–Mass Spectrometry. Metabolites. 2022;12(6):525. doi: 10.3390/metabo12060525
  70. Zhang C, Tang P, Xu H, Weng Y, Tang Q, Zhao H. Analysis of Short-Chain Fatty Acids in Fecal Samples by Headspace-Gas Chromatography. Chromatographia. 2018;81:1317–1323. doi: 10.1007/s10337-018-3572-7
  71. Kukaev E, Kirillova E, Tokareva A, et al. Impact of Gut Microbiota and SCFAs in the Pathogenesis of PCOS and the Effect of Metformin Therapy. Int J Mol Sci. 2024;25(19):10636. doi: 10.3390/ijms251910636
  72. Luu M, Visekruna A. Short-chain fatty acids: Bacterial messengers modulating the immunometabolism of T cells. Eur J Immunol. 2019;49(6):842–848. doi: 10.1002/eji.201848009
  73. Moffett JR, Puthillathu N, Vengilote R, Jaworski DM, Namboodiri AM. Acetate Revisited: A Key Biomolecule at the Nexus of Metabolism, Epigenetics and Oncogenesis – Part 1: Acetyl-CoA, Acetogenesis and Acyl-CoA Short-Chain Synthetases. Front Physiol. 2020;11:580167. doi: 10.3389/fphys.2020.580167
  74. Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg Effect Dictates the Mechanism of Butyrate Mediated Histone Acetylation and Cell Proliferation. Mol Cell. 2012;48(4):611–626. doi: 10.1016/j.molcel.2012.08.033
  75. Baldassarre ME, Di Mauro A, Capozza M, et al. Dysbiosis and prematurity: Is there a role for probiotics? Nutrients. 2019;11(6):1273. doi: 10.3390/nu11061273
  76. Zhao J, Hu J, Ma X. Sodium caprylate improves intestinal mucosal barrier function and antioxidant capacity by altering gut microbial metabolism. Food Funct. 2021;12(20):9750–9762. doi: 10.1039/d1fo01975a
  77. Levy M, Thaiss CA, Zeevi D, et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell. 2015;163(6):1428–1443. doi: 10.1016/j.cell.2015.10.048
  78. Tian P, Yang W, Guo X, et al. Early life gut microbiota sustains liver-resident natural killer cells maturation via the butyrate-IL-18 axis. Nat Commun. 2023;14(1):1710. doi: 10.1038/s41467-023-37419-7
  79. Beisner J, Filipe Rosa L, Kaden-Volynets V, Stolzer I, Günther C, Bischoff SC. Prebiotic Inulin and Sodium Butyrate Attenuate Obesity-Induced Intestinal Barrier Dysfunction by Induction of Antimicrobial Peptides. Front Immunol. 2021;12:678360. doi: 10.3389/fimmu.2021.678360
  80. van der Hee B, Wells JM. Microbial Regulation of Host Physiology by Short-chain Fatty Acids. Trends Microbiol. 2021;29(8):700–712. doi: 10.1016/j.tim.2021.02.001
  81. Schulthess J, Pandey S, Capitani M, et al. The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages. Immunity. 2019;50(2):432–445.e7. doi: 10.1016/j.immuni.2018.12.018
  82. Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461(7268):1282–1286. doi: 10.1038/nature08530
  83. Thomas SP, Denu JM. Short-chain fatty acids activate acetyltransferase p300. Elife. 2021;10:e72171. doi: 10.7554/eLife.72171
  84. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–450. doi: 10.1038/nature12721
  85. Sun M, Wu W, Chen L, et al. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat Commun. 2018;9(1):3555. doi: 10.1038/s41467-018-05901-2
  86. Kim M, Qie Y, Park J, Kim CH. Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host Microbe. 2016;20(2):202–214. doi: 10.1016/j.chom.2016.07.001
  87. Kumar M, Singh P, Murugesan S, et al. Microbiome as an Immunological Modifier. Methods Mol Biol. 2020;2055:595–638. doi: 10.1007/978-1-4939-9773-2_27
  88. Sorbara MT, Dubin K, Littmann ER, et al. Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification. J Exp Med. 2019;216(1):84–98. doi: 10.1084/jem.20181639
  89. Byndloss MX, Olsan EE, Rivera-Chávez F, et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science. 2017;357(6351):570–575. doi: 10.1126/science.aam9949
  90. Fundora JB, Guha P, Shores DR, Pammi M, Maheshwari A. Intestinal dysbiosis and necrotizing enterocolitis: assessment for causality using Bradford Hill criteria. Pediatr Res. 2020;87(2):235–248. doi: 10.1038/s41390-019-0482-9
  91. Jilling T, Simon D, Lu J, et al. The Roles of Bacteria and TLR4 in Rat and Murine Models of Necrotizing Enterocolitis. J Immunol. 2006;177(5):3273–3282. doi: 10.4049/jimmunol.177.5.3273
  92. Waligora-Dupriet AJ, Dugay A, Auzeil N, Huerre M, Butel MJ. Evidence for clostridial implication in necrotizing enterocolitis through bacterial fermentation in a gnotobiotic quail model. Pediatr Res. 2005;58(4):629–635. doi: 10.1203/01.PDR.0000180538.13142.84
  93. Alsharairi NA. Therapeutic Potential of Gut Microbiota and Its Metabolite Short-Chain Fatty Acids in Neonatal Necrotizing Enterocolitis. Life (Basel). 2023;13(2):561. doi: 10.3390/life13020561
  94. Athalye-Jape G, Esvaran M, Patole S, et al. Effect of single versus multistrain probiotic in extremely preterm infants: a randomised trial. BMJ Open Gastroenterol. 2022;9(1):e000811. doi: 10.1136/bmjgast-2021-000811
  95. Neumann CJ, Mahnert A, Kumpitsch C, et al. Clinical NEC prevention practices drive different microbiome profiles and functional responses in the preterm intestine. Nat Commun. 2023;14(1):1349. doi: 10.1038/s41467-023-36825-1
  96. Frau A, Lett L, Slater R, et al. The stool volatile metabolome of pre-term babies. Molecules. 2021;26(11):3341. doi: 10.3390/molecules26113341
  97. Wang C, Shoji H, Sato H, et al. Effects of oral administration of Bifidobacterium breve on fecal lactic acid and short-chain fatty acids in low birth weight infants. J Pediatr Gastroenterol Nutr. 2007;44(2):252–257. doi: 10.1097/01.mpg.0000252184.89922.5f
  98. Xiong J, Liao XS, Yin T, Liu XC, Bao L, Li LQ. Alterations of the gut microbiota and short chain fatty acids in necrotizing enterocolitis and food protein-induced allergic protocolitis infants: A prospective cohort study. Front Cell Infection Microbiol. 2022;12:1030588. doi: 10.3389/fcimb.2022.1030588
  99. Huang H, Peng Q, Zhang Y, et al. Abnormalities in microbial composition and function in infants with necrotizing enterocolitis: A single-center observational study. Front Pediatr. 2022;10:963345. doi: 10.3389/fped.2022.963345
  100. Casaburi G, Wei J, Kazi S, et al. Metabolic model of necrotizing enterocolitis in the premature newborn gut resulting from enteric dysbiosis. Front Pediatr. 2022;10:893059. doi: 10.3389/fped.2022.893059
  101. Pourcyrous M, Nolan VG, Goodwin A, Davis SL, Buddington RK. Fecal short-chain fatty acids of very-low-birth-weight preterm infants fed expressed breast milk or formula. J Pediatr Gastroenterol Nutr. 2014;59(6):725–731. doi: 10.1097/MPG.0000000000000515
  102. Cifuentes MP, Chapman JA, Stewart CJ. Gut microbiome derived short chain fatty acids: Promising strategies in necrotising enterocolitis. Curr Res Microb Sci. 2024;6:100219. doi: 10.1016/j.crmicr.2024.100219
  103. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace N. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780–13785. doi: 10.1073/pnas.0706625104
  104. Sokol H, Seksik P, Furet JP, et al. Low counts of faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;15(8):1183–1189. doi: 10.1002/ibd.20903
  105. Waligora-Dupriet AJ, Dugay A, Auzeil N, et al. Short-chain fatty acids and polyamines in the pathogenesis of necrotizing enterocolitis: Kinetics aspects in gnotobiotic quails. Anaerobe. 2009;15(4):138–144. doi: 10.1016/j.anaerobe.2009.02.001
  106. Lin J, Nafday SM, Chauvin SN, et al. Variable effects of short chain fatty acids and lactic acid in inducing intestinal mucosal injury in newborn rats. J Pediatr Gastroenterol Nutr. 2002;35(4):545–550. doi: 10.1097/00005176-200210000-00016
  107. Nafday SM, Chen W, Peng L, Babyatsky MW, Holzman IR, Lin J. Short-chain fatty acids induce colonic mucosal injury in rats with various postnatal ages. Pediatr Res. 2005;57(2):201–204. doi: 10.1203/01.PDR.0000150721.83224.89
  108. Thymann T, Møller HK, Stoll B, et al. Carbohydrate maldigestion induces necrotizing enterocolitis in preterm pigs. Am J Physiol Gastrointest Liver Physiol. 2009;297(6):G1115–G1125. doi: 10.1152/ajpgi.00261.2009
  109. Kien CL. Digestion, absorption, and fermentation of carbohydrates in the newborn. Clin Perinatol. 1996;23(2):211–228. doi: 10.1016/s0095-5108(18)30239-2
  110. Peng L, He Z, Chen W, Holzman IR, Lin J. Effects of butyrate on intestinal barrier function in a caco-2 cell monolayer model of intestinal barrier. Pediatr Res. 2007;61(1):37–41. doi: 10.1203/01.pdr.0000250014.92242.f3
  111. Vieira ELM, Leonel AJ, Sad AP, et al. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. J Nutr Biochem. 2012;23(5):430–436. doi: 10.1016/j.jnutbio.2011.01.007

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Kukaev E.N., Tokareva A.O., Krogh-Jensen O.A., Lenyushkina A.A., Starodubtseva N.L., 2025

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».