Reconstruction of the mean January Air Temperature in the Early Holocene on the Eastern Coast of Chukotka

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The investigation is concerned with the Early Holocene syngenetic massive wedge ice exposed in the outcrop of a polygonal peatland in the upper part of the third marine terrace near Lorino settlement on the eastern coast of Chukotka. Based on the obtained radiocarbon dates of peat, it was found that the formation of a peatland in the area began about 14–13 cal ka BP, at the end of the Younger Dryas, while the termination of the active stage of peat accumulation was dated to about 10–9 cal ka BP. The beginning of peat accumulation at the end of the Younger Dryas, earlier the officially accepted limit of the lower boundary of the Holocene (11.7 cal ka BP), and the termination of its formation by the middle of the Greenlandian Holocene period is not a rare phenomenon in Russian permafrost zone, although it is traditionally assumed that the most active formation of peatlands has been going on during the thermal maximum in the middle of the Holocene. The age inversions noted in the peat vertical profiles are the most likely indicative of the processes of re-deposition of ancient organic material due to erosion by water of the third marine terrace sediments and the separation of the allochthonous peat. During the period from 2015 to 2021, six fragments of peatland exposures with the ice wedges were studied. Analysis of the obtained data on the content of stable oxygen isotopes in the ice show that δ18О values vary within the range from –15.5 to –18‰. These values are in good agreement with the data for Early Holocene ice wedges earlier obtained in other areas of the eastern coast of Chukotka (Anadyr town, Uelen settlement), where authors report the δ18O values from –16 to –19.4‰. This suggests that the ice wedge growth as well as the peat accumulation were the most active in Early Holocene. The highest δ18О values (from –13.1 to –16.8‰) were obtained for the modern ice veinlets. The ratio δ2H–δ18O in the ice wedges, in general, is indicative of a good preservation of isotope signature of winter precipitation. It has been found that approximate mean January air temperature in the Early Greenlandian period varied from –23 to –27°С, which is, on average, 3°С below than the present-day ones.

Авторлар туралы

N. Budantseva

Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: nadin.budanceva@mail.ru
Russia, Moscow

A. Maslakov

Lomonosov Moscow State University

Email: nadin.budanceva@mail.ru
Russia, Moscow

Yu. Vasil’chuk

Lomonosov Moscow State University

Email: nadin.budanceva@mail.ru
Russia, Moscow

A. Vasil’chuk

Lomonosov Moscow State University

Email: nadin.budanceva@mail.ru
Russia, Moscow

L. Kuzyakin

Lomonosov Moscow State University

Email: nadin.budanceva@mail.ru
Russia, Moscow

Әдебиет тізімі

  1. Anderson P.M., Lozhkin A.V. Changes in the vegetation and climate of the Northern Okhotsk region at the boundary of the Pleistocene and Holocene. Doklady Akademii Nauk SSSR. Reports of the USSR Academy of Sciences. 1996, 348 (3): 403–406 [In Russian].
  2. Budantseva N.A., Vasil’chuk Y.K. Winter air temperature in Holocene reconstructed from the ice wedges stable water isotopes near Anadyr town. Led i Sneg. Ice and Snow. 2019, 59 (1): 93–102 [In Russian]. https://doi.org/10.15356/20766734-2019-1-93-102
  3. Budantseva N.A., Maslakov A.A., Vasil’chuk Yu.K., Baranskaya A.V., Belova N.G., Vasil’chuk A.C., Romanenko F.A. Winter air temperature in the early and middle Holocene on the eastern coast of Daurkin Peninsula, Chukotka, reconstructed from stable isotopes of ice wedges. Led i Sneg. Ice and Snow. 2020, 60 (2): 251–262 [In Russian]. https://doi.org/10.31857/S2076673420020038
  4. Vasil’chuk Y.K. Oxygen isotope composition of ground ice (application to paleogeocryological reconstructions). Moscow: Theoretical Problems Department Academy of Sciences and Lomonosov Moscow University Publications. 1992, 1: 420, 2: 264 [In Russian].
  5. Makeev V.M., Arslanov H.A., Baranovskaya O.F., Kosmodamianskij A.V., Ponomareva D.P., Tertychnaya T.V. Stratigraphy, geochronology and paleogeography of the Late Pleistocene and Holocene of Kotelny Island. Byulleten’ Komissii po izucheniyu chetvertichnogo perioda. Bulletin of the Commission for the Study of the Quaternary Period. 1989, 58: 58–69 [In Russian].
  6. Mikishin Y.A., Gvozdeva I.G., Petrenko T.I. Early Holocene of Sakhalin. Aktual’nye problemy gumanitarnyh i estestvennyh nauk. Actual problems of humanities and natural sciences. 2010, 12: 432–437 [In Russian].
  7. Neishtadt M.I. On the question of some concepts for the Holocene division. Izvestiya Ros. Akad. Nauk. Seriya geograficheskaya. Proc. of Russian Academy of Sciences. Geographical series. 1983, 2: 103–108 [In Russian].
  8. Romanenko F.A., Nikolaev V.I., Arkhipov V.V. Changes in the isotopic composition of natural ice on the East Siberian Sea coast: a geographical aspect. Led i Sneg. Ice and Snow. 2011, 1: 93–104 [In Russian].
  9. Tarasov P.E., Andreev A.A., Romanenko F.A., Sulerzhitsky L.D. Palinostratigraphy of upper quaternary deposits of Sverdrup Island (Kara Sea). Stratigrafiya, geologicheskaya korrelyaciya. Stratigraphy, geological correlation. 1995, 3 (2): 98–104 [In Russian].
  10. Bronk Ramsey C. Bayesian Analysis of Radiocarbon Dates. Radiocarbon. 2009, 51 (1): 337–360.
  11. Dansgaard W. Stable isotopes in precipitation. Tellus. 1964, 16: 436–468. doi: 10.1111/j.2153-3490.1964.tb00181.x.
  12. Lacourse T., Delepine J.M., Hoffman E.H., Mathewes R.W. A 14 000 year vegetation history of a hypermaritime island on the outer Pacific coast of Canada based on fossil pollen, spores and conifer stomata. Quaternary Research. 2012, 78: 572–582.
  13. Lozhkin A.V., Anderson P.M., Vazhenina L.N. Younger Dryas and Early Holocene Peats from northern Far East Russia. Quaternary International. 2011, 237 (1–2): 54–64. 1 https://doi.org/0.1016/j.quaint.2011.01.009.
  14. MacDonald G.M., Velichko A.A., Kremenetski C.V., Borisova O.K., Goleva A.A., Andreev A.A, Cwynar L.C., Riding R.T., Forman S.L., Edwards T.W.D., Aravena R., Hammarlund D., Szeicz J.M., Gattaulin V.N. Holocene Treeline History and Climate Change Across Northern Eurasia. Quaternary Research. 2000, 53 (3) 302–311. https://doi.org/10.1006/qres.1999.2123.
  15. Reimer P.J., Austin W.E.N., Bard E., Bayliss A., Blackwell P.G., Bronk Ramsey C., Butzin M., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Hajdas I., Heaton T.J., Hogg A.G., Hughen K.A., Kromer B., Manning S.W., Muscheler R., Palmer J.G., Pearson C., van der Plicht J., Reimer R.W., Richards D.A., Scott E.M., Southon J.R., Turney C.S.M., Wacker L., Adolphi F., Büntge U., Capano M., Fahrni S.M., Fogtmann-Schulz A., Friedrich R., Köhler P., Kudsk S., Miyake F., Olsen J., Reinig F., Sakamoto M., Sookdeo A., Talamo S. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon. 2020, 62 (4): 725–757. https://doi.org/10.1017/RDC.2020.41.
  16. Schwamborn G., Meyer H., Fedorov G., Schirrmeister L., Hubberten H. Ground ice and slope sediments archiving late Quaternary paleoenvironment and paleoclimate signals at the margins of El’gygytgyn Impact Crater, NE Siberia. Quaternary Research. 2006, 66: 259–272. https://doi.org/10.1016/j.yqres.2006.06.007.
  17. Vasil’chuk Y.K. Reconstruction of the palaeoclimate of the Late Pleistocene and Holocene of the basis of isotope studies of subsurface ice and waters of the permafrost zone. Water Resources. 1991, 17 (6): 640–647.
  18. Vasil’chuk Y.K., Budantseva N.A. Holocene ice wedges of the Kolyma Lowland and January paleotemperature reconstructions based on oxygen isotope records // Permafrost and Periglacial Processes. 2022, 33 (1): 3–17. https://doi.org/10.1002/ppp.2128.
  19. Vasil’chuk Y.K., Budantseva N.A., Farquharson L., Maslakov A.A., Vasil’chuk A.C., Chizhova J.N. Isotopic evidence for Holocene January air temperature variability on the East Chukotka Peninsula. Permafrost and Periglacial Processes. 2018, 29 (4): 283–297. https://doi.org/10.1002/ppp.1991.
  20. Vasil’chuk Y.K., Vasil’chuk A.C. Thick polygonal peatlands in continuous permafrost zone of West Siberia. Earth’s Cryosphere. 2016, XX (4): 3–13. https://doi.org/10.21782/KZ1560-7496-2016-4(3-15).
  21. Vasil’chuk Y.K., Vasil’chuk A.C. Validity of radiocarbon ages of Siberian yedoma. GeoRes. Journal. 2017, 13: 83–95. https://doi.org/10.1016/j.grj.2017.02.004.
  22. Meteo Publications. Электронный ресурс. http://meteo.ru/data/156-temperature (Last access: 20 September 2022).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (201KB)
3.

Жүктеу (3MB)
4.

Жүктеу (55KB)
5.

Жүктеу (354KB)

© Н.А. Буданцева, А.А. Маслаков, Ю.К. Васильчук, А.К. Васильчук, Л.П. Кузякин, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».