Breaks in the Arctic ice cover: from observations to predictions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Breaks (ruptures) and cracks is the distinguishing feature of any ice cover in the Arctic seas during the cold season and in the whole Arctic Basin throughout a year. The formation of them is a consequence of macro-deformation of the ice thickness. Investigating of the ice breaking in the Arctic begins with single visual observations during the ice aerial surveys in the 1940s and continues till nowadays using regular information from artificial Earth satellites. Processing of big volumes of satellite data and creating climatological datasets on breaks became possible owing to the development of algorithms for automatic identification of the ice breaks in images. Interpretation of the satellite images is based on the fundamental difference between physical properties of breaks and the surrounding consolidated ice. Algorithms for automatic recognition of ruptures using satellite data obtained in different wavelength ranges, including the use of artificial intelligence, are currently being developed. The main characteristics of breaks which are usually analyzed are as follows: the summarized area of them and its ratio to the total area of the ice field, the mean and maximum widths as well as the total length. The temporal and spatial variability of these characteristics is also considered. Such information is needed for solving problems of improving models of ice cover dynamics and modeling the interaction between the ocean and the atmosphere at high latitudes. A specific feature of publications of the Russian authors on this topic is the practical use of the results obtained for hydrometeorological support of navigation in ice. For the navigation purposes, the dominant orientation of the ruptures on the way of ships is of greatest importance. Operational and prognostic information about the orientation and extent of ruptures, including distribution of them in an ice field are the key data for choosing the optimal sailing route in the Arctic.

Full Text

Restricted Access

About the authors

A. A. Ershova

Arctic and Antarctic research institute

Author for correspondence.
Email: aaershova@aari.ru
Saint-Petersburg

L. N. Dyment

Arctic and Antarctic research institute

Email: aaershova@aari.ru
Russian Federation, Saint-Petersburg

T. A. Alekseeva

Arctic and Antarctic research institute

Email: aaershova@aari.ru
Russian Federation, Saint-Petersburg

References

  1. Borodachev V. E. On block structure of ice cover. Trudy AANII. Proc. of the AARI. 1974, 316: 25–27 [In Russian].
  2. Brestkin S. V., Gorbunov Yu.A., Losev S. M. Analysis of discontinuities of sea ice cover in winter based on the materials of the airborne radar surveys. Trudy AANII. Proc. of the AARI. 1988, 401: 94–103 [In Russian].
  3. Volkov N. A., Gudkovich Z. M., Uglev V. D. Results of the study of non-uniform drift in the Arctic basin. Trudy AANII. Proc. of the AARI. 1971, 303: 76–88 [In Russian].
  4. Gorbunov Yu.A., Belikov S. E., Shil’nikov V. I. Impact of ice conditions on the distribution and abundance of polar bears in the seas of the Soviet Arctic. Bulleten’ moskovskogo obschestva lubitelej prirody. Biologicheskiy otdel. Bulletin of Moscow society of naturalists. Biological series. 1987, 92 (5): 19–24 [In Russian].
  5. Gorbunov Yu.A., Dyment L. N., Losev S. M. Srednie mnogoletnie kharakteristiki krupnih narusheniy sploshnosti l’da v Karskom more i v Severo-Vostochnoy chasti Barentseva morya. Average long-term characteristics of large ice discontinuities in the Kara Sea and in the Northeastern part of the Barents Sea. Reference book. Saint-Petersburg: AARI, 2014: 36 p. [In Russian].
  6. Gorbunov Yu.A., Dyment L. N., Losev S. M., Frolov S. V. Medium-range forecasts of large ice cover discontinuities for hydrometeorological support of navigation in the Arctic basin. Meteorologiya i gidrologiya. Meteorology and Hydrology. 2008, 9: 78–96 [In Russian].
  7. Gorbunov Yu.A., Karelin I. D., Losev S. M. On the causes of sea ice cover discontinuities in winter season. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 1986, 62: 110–116 [In Russian].
  8. Gorbunov Yu.A., Losev S. M., Dyment L. N. Method of diagnostics and medium-range forecast of leads in the ice cover of the Kara Sea. Trudy AANII. Proc. of the AARI. 2001, 443: 94–102 [In Russian].
  9. Doronin Yu. P. Vzaimodejstvie atmosfery i okeana. The ocean-Atmosphere interaction. Leningrad: Hydrometeoizdat, 1981: 288 p. [In Russian].
  10. Dyment L. N., Ershova A. A., Porubaev V. S. Short-time forecast of modal orientation of leads in the Laptev Sea. Trudy RAO/CIS OFFSHORE. Proc. of RAO/CIS OFFSHORE, 2023. Moscow: Pero, 2023: 181–184 [In Russian].
  11. Dyment L. N., Losev S. M. Spatial differences in the density of leads in the ice cover of the Atlantic part of the Arctic Basin. Led I Sneg. Ice and Snow. 2020, 60 (4): 567–577. https://doi.org/10.31857/S2076673420040061 [In Russian].
  12. Dyment L. N., Losev C. M., Porubaev V. S. Сharacteristics of large leads in the sea ice cover of the Atlantic part of the Arctic basin. Reference book. Saint-Peteresburg: AARI, 2020: 28 p. [In Russian].
  13. Karelin I. D. Systems of large leads in the drifting ice cover of the Kara Sea in winter period. Trudy AANII. Proc. of the AARI. 1998, 438: 51–62 [In Russian].
  14. Komov N. I., Kupetskiy V. N. On stationary fractures and breakes in sea ice. Trudy AANII. Proc. of the AARI. 1975, 126: 41–47 [In Russian].
  15. Kupetskiy V. N. On cryotectonic lineaments. Trudy AANII. Proc. of the AARI. 1973, 318: 160–166 [In Russian].
  16. Kupetskiy V. N. Macro-features of the stressed state of ice cover. Trudy AANII. Proc. of the AARI. 1974, 316: 18–24 [In Russian].
  17. Losev S. M., Gorbunov Yu. A. Diagnostics and medium-range forecast of sea ice cover discontinuities. Trudy AANII. Proc. of the AARI. 1998, 438: 13–25 [In Russian].
  18. Losev S. M., Gorbunov Yu.A., Dyment L. N. Leads in ice cover of the Arctic Basin from satellite data. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2002, 73: 36–52 [In Russian].
  19. Losev S. M., Dyment L. N., Mironov Ye. U. Extent of large leads in the drifting ice of the Atlantic part of the Arctic basin from NOAA satellite images. Led i Sneg. Ice and Snow. 2017, 57 (4): 543–552. https://doi.org/10.15356/2076-6734-2017-4-543-552 [In Russian].
  20. Makarov Ye.I., Sapershtein Ye.B., Frolov S. V., Fedjakov V. Ye. Development of scenarios for tactical planning of transit voyages of gas carriers in ice conditions along the NSR. Trudy RAO/CIS OFFSHORE. Proc. of RAO/CIS OFFSHORE, 2021. Moscow: Pero, 2021: 181–187 [In Russian].
  21. Melnikov I. A. Ekosistema arkticheskogo morskogo l’da. Ecosystem of the Arctic sea ice. Moscow: Nauka, 1989: 191 p. [In Russian].
  22. Nazirov M. L’dy i vzvesi kak gidrotermodinamicheskie trassery po dannym kosmicheskih mnogozonalnyh s’yomok. Ice and suspensions as hydrotermodynamic tracers according to multi-zonal space-based surveys. Leningrad: Hydrometeoizdat, 1982: 161 p. [In Russian].
  23. Smirnov V. G., Bichkova I. A., Zahvatkina N. Yu. Development of methods for operational assessment of ice cover discontinuites by means of satellite information. Rossiyskie poljarniye issledovaniya. Russian polar research. 2022, 1 (47): 5–7 [In Russian].
  24. Sputnikovie metody opredeleniya kharakteristik ledjanogo pokrova morej. Satellite methods for determining the characteristics of sea ice cover. Saint Petersburg: AANII, 2011: 239 p. [In Russian].
  25. Frolov S. V. Main regularities of the distribution of sea ice cover characteristics and their impact on movement of icebreaker in the Arctic basin in summer period (according to the data of high-latitude voyages). Trudy AANII. Proc. of the AARI. 1997, 437: 83–98 [In Russian].
  26. Frolov S. V. Impact of orientation of ice discontinuites on the efficiency of ship traffic in the Arctic basin in summer. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2013, 3 (97): 35–45 [In Russian].
  27. Frolov S. V., Yulin A. V. Specialized hydrometeorological support of high-latitude voyages of the scientific expeditional vessel “Akademik Fedorov” in 2000, 2004–2005. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2007, 1 (75): 128–139 [In Russian].
  28. Hibler W. D., Weeks W. E., Ackley S., Kovacs A., Campbell W. J. Mesoscale strain measurements on the Beaufort sea pack ice (AIDJEX 1971). Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 1974, 43–44: 119–138 [In Russian].
  29. Shil’nikov V. I. On the method of observing the fragmentation of ice cover. Trudy AANII. Proc. of the AARI. 1973, 307: 187–193 [In Russian].
  30. von Albedyll L., Hendricks S., Hutter N., Murashkin D., Kaleschk L., Willmes S., Thielke L., Tian-Kunze X., Spreen G., Haas C. Lead fractions from SAR-derived sea ice divergence during MOSAiC. The Cryosphere. 2023: 1–39. https://doi.org/10.5194/tc-2023-123
  31. Alekseeva T. A., May R. I., Fedyakov V. Y., Makarov Y. I., Klyachkin S. V., Dyment L. N., Grishin Ye.A., Ershova A. A. and Krupina N. A. Ice Automatic Routing: Analysis of Simulation Testing Based on Voyages of Arc7 Class Vessels in the Arctic. International Journ. of Offshore and Polar Engineering. 2023, 33 (03): 234–241. https://doi.org/10.17736/ijope.2023.ik12
  32. Bröhan D., Kaleschke L. A Nine-Year Climatology of Arctic Sea Ice Lead Orientation and Frequency from AMSR-E Remote Sensing. 2014, 6 (2): 1451–1475. https://doi.org/10.3390/rs6021451
  33. Chechin D. G., Makhotina I. A., Lüpkes C., Makshtas A. P. Effect of Wind Speed and Leads on Clear-Sky Cooling over Arctic Sea Ice during Polar Night. Journ. of the Atmospheric Sciences. 2019, 76 (8): 2481–2503. https://doi.org/10.1175/JAS-D-18-0277.1
  34. Coon M. D., Evans R. J. On Wind-Induced Cracking Of Sea-Ice Sheets. Journ. of Glaciology. 1977, 18 (78): 152–154. https://doi.org/10.3189/S0022143000021638
  35. Coon M. D., Maykut G. A., Pritchard R. S., Rothrock D. A., Thorndike A. S. Modeling the pack ice as an elastic-plastic material. AIDJEX BULLETIN. 1974, 24: 1–106.
  36. Gultepe I., Isaac G. A., Williams A., Marcotte D., Strawbridge K. B. Turbulent heat fluxes over leads and polynyas, and their effects on arctic clouds during FIRE.ACE: Aircraft observations for April 1998. Atmosphere–Ocean. 2003, 41 (1): 15–34. https://doi.org/10.3137/ao.410102
  37. Hoffman J. P., Ackerman S. A., Liu Y., Key J. R. The Detection and Characterization of Arctic Sea Ice Leads with Satellite Imagers. Remote Sensing. 2019, 11 (5): 521. https://doi.org/10.3390/rs11050521
  38. Hoffman J. P., Ackerman S. A., Liu Y. Key J. R. A 20-Year Climatology of Sea Ice Leads Detected in Infrared Satellite Imagery Using a Convolutional Neural Network. Remote Sensing. 2022, 14 (22): 5763. https://doi.org/10.3390/rs14225763
  39. Hoffman J. P., Ackerman S. A., Liu Y., Key J. R., McConnell I. L. Application of a Convolutional Neural Network for the Detection of Sea Ice Leads. Remote Sensing. 2021, 13 (22): 4571. https://doi.org/10.3390/rs13224571
  40. Hutter N., Losch M. Feature-based comparison of sea ice deformation in lead-permitting sea ice simulations. The Cryosphere. 2020, 14 (1): 93–113. https://doi.org/10.5194/tc-14-93-2020
  41. Hutter N., Zampieri L., Losch M. Leads and ridges in Arctic sea ice from RGPS data and a new tracking algorithm. The Cryosphere. 2019, 13 (2): 627–645. https://doi.org/10.5194/tc-13-627-2019
  42. Key J., Stone R., Maslanik J., Ellefsen E. The detectability of sea-ice leads in satellite data as a function of atmospheric conditions and measurement scale. Annals of Glaciology. 1993, 17: 227–232. https://doi.org/10.3189/s026030550001288x
  43. Li M., Liu J., Qu M., Zhang Z., Liang X. An Analysis of Arctic Sea Ice Leads Retrieved from AMSR-E/AMSR2. Remote Sensing. 2022, 14 (4): 969. https://doi.org/10.3390/rs14040969
  44. Lindsay R. W., Rothrock D. A. Arctic sea ice leads from advanced very high resolution radiometer images. Journ. of Geophys. Research: Oceans. 1995, 100 (C3): 4533–4544. https://doi.org/10.1029/94JC02393
  45. Lüpkes C., Vihma T., Birnbaum G., Wacker U. Influence of leads in sea ice on the temperature of the atmospheric boundary layer during polar night. Geophys. Research Letters. 2008, 35 (3): L03805. https://doi.org/10.1029/2007GL032461
  46. Lyden J. D., Shuchman R. A. A Digital Technique to Estimate Polynya Characteristics from Synthetic Aperture Radar Sea-Ice Data. Journ. of Glaciology. 1987, 33 (114): 243–245. https://doi.org/10.3189/S0022143000008765
  47. Marcq S., Weiss J. Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere. The Cryosphere. 2012, 6 (1): 143–156. https://doi.org/10.5194/tc-6-143-2012
  48. Marko J. R., Thomson R. E. Spatially periodic lead patterns in the Canada Basin Sea Ice: A possible relationship to planetary waves. Geophys. Research Letters. 1975, 2 (10): 431–434. https://doi.org/10.1029/GL002i010p00431
  49. Maslanik J. A., Barry R. G. Short-Term Interactions Between Atmospheric Synoptic Conditions and Sea-Ice Behaviour in the Arctic. Annals of Glaciology. 1989, 12: 113–117. https://doi.org/10.3189/S0260305500007059
  50. May R., Tarovik O., Topaj A., Fedyakov V., Frolov S. Method for finding the optimal ship route in ice based on vector geo-algorithms. Intern. Journ. of Offshore and Polar Engineering. 2020, 30 (1): 78–85. https://doi.org/10.17736/ijope.2020.jc785
  51. Rampal P., Weiss J., Marsan D. Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979–2007. Journ. of Geophys. Research. 2009, 114 (C5). https://doi.org/10.1029/2008JC005066
  52. Reiser F., Willmes S., Heinemann G. A New Algorithm for Daily Sea Ice Lead Identification in the Arctic and Antarctic Winter from Thermal-Infrared Satellite Imagery. Remote Sensing. 2020, 12 (12): 1957. https://doi.org/10.3390/rs12121957
  53. Richter-Menge J., McNutt L., Overland J., Kwok R. Relating Arctic pack ice stress and deformation under winter conditions. Journ. of Geophys. Research. 2002, 107 (C10): 8040. https://doi.org/10.1029/2000JC000477
  54. Röhrs J., Kaleschke L. An algorithm to detect sea ice leads by using AMSR-E passive microwave imagery. The Cryosphere. 2012, 6 (2): 343–352. https://doi.org/10.5194/tc-6–343–2012
  55. Stirling I. The importance of polynyas, ice edges, and leads to marine mammals and birds. Journ. of Marine Systems. 1997, 10 (1): 9–21. https://doi.org/10.1016/S0924-7963(96)00054-1
  56. Stone R. S., Key J. R. The Detectability of Arctic Leads Using Thermal Imagery Under Varying Atmospheric Conditions. Journ. of Geophys. Research. 1993, 9 (C7): 12469–12482.
  57. Tschudi M., Curry J., Maslanik J. Characterization of springtime leads in the Beaufort/Chukchi Seas from airborne and satellite observations during FIRE/SHEBA. Journ. of Geophys. Research: Oceans. 2002, 107 (C10): 8034. https://doi.org/10.1029/2000JC000541
  58. Willmes S., Heinemann G. Sea-Ice Wintertime Lead Frequencies and Regional Characteristics in the Arctic, 2003–2015. Remote Sensing. 2016, 8 (1): 4. https://doi.org/10.3390/rs8010004
  59. Zakharova E. A., Fleury S., Guerreiro K., Willmes S., Rémy F., Kouraev A. V., Heinemann G. Sea Ice Leads Detection Using SARAL/AltiKa Altimeter. Marine Geodesy. 2015, 38 (1): 522–533. https://doi.org/10.1080/01490419.2015.1019655

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Sea ice lead in the Greenland Sea, 2007. Photo by T. A. Alekseeva.

Download (225KB)
3. Fig. 2. Systems of sea ice leads in the satellite images VIIRS Suomi NPP in infrared range (11 mm): а — Laptev Sea, April 14, 2023; b — Beaufort Sea, April 4, 2023; c — Laptev Sea, January 5, 2022; 1 — quasiparallel system of leads; 2 — polygonal system of leads; 3 — radial-type system of leads.

Download (939KB)
4. 3 — radial-type system of leads.

Download (470KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».