Evaluation of an generalization ability of the nested contours algorithm in the mammograms analysis
- 作者: Egoshin I.A.1
-
隶属关系:
- Federal State Budgetary Educational Institution of Higher Education “Mari State University”
- 期: 卷 74, 编号 3 (2024)
- 页面: 67-77
- 栏目: Pattern Recognition
- URL: https://journal-vniispk.ru/2079-0279/article/view/293511
- DOI: https://doi.org/10.14357/20790279240308
- EDN: https://elibrary.ru/NXRKLK
- ID: 293511
如何引用文章
全文:
详细
The work presents an nested contours algorithm designed for detecting pathological changes that may correspond to breast cancer on X-ray mammographic images, and provides the results of evaluating its generalization ability. This algorithm was tested on a large dataset of mammographic images with all possible variations of changes corresponding to verified breast cancer, including faintly visible and invisible ones. The overall detection accuracy of the algorithm was 90.73% for film and 96.82% for digital mammograms. A comparative analysis of using this algorithm and other modern methods of change detection on mammograms, with publicly available databases (INbreast and CBIS-DDSM), is also provided. The higher accuracy of the proposed algorithm is demonstrated. The high efficiency of detecting pathological changes, regardless of the differences in mammogram characteristics obtained from different systems, indicates the high generalization ability of the proposed algorithm.
作者简介
Ivan Egoshin
Federal State Budgetary Educational Institution of Higher Education “Mari State University”
编辑信件的主要联系方式.
Email: jungl91@mail.ru
Junior researcher
俄罗斯联邦, Yoshkar-Ola参考
- Ferlay J., Soerjomataram I., Ervik M., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D.M., Forman D., Bray F. GLOBOCAN 2012 v1.1, Cancer Incidence and Mortality Worldwide: IARC CancerBase. No. 11. Lyon, France: International Agency for Research on Cancer, 2014. Available from: http://globocan.iarc.fr/ [Accessed 16 January 2024].
- United States Preventive Services Task Force. Screening for breast cancer: U.S. Preventive Services Task Force recommendation statement, Annals of Internal Medicine. 2009; 151: 716-726.
- Pasynkov D.V., Egoshin I.A., Kolchev А.А., Kliouchkin I.V., Pasynkova О.О. The value of computer aided detection system in breast cancer difficult to detect at screening mammography. REJR. 2019; 9(2): 107-118 (In Russ). doi: 10.21569/2222-7415-2019-9-2-107-118
- Vasilev Yu.A., Tyrov I.A., Vladzymyrskyy A.V., Arzamasov K.M., Shulkin I.M., Kozhikhina D.D., Pestrenin L.D. Double-reading mammograms using artificial intelligence technologies: A new model of mass preventive examination organization. Digital Diagnostics. 2023; 4(2): 93-104 (In Russ). doi: 10.17816/DD321423
- Singh N., Veenadhari S. Breast cancer segmentation using global thresholding and region merging. International Journal of Computer Sciences and Engineering. 2018; 6(12): 292-297. doi:10.26438/ ijcse/v6i12.292297
- Podgornova Y.A., Sadykov S.S. Comparative analysis of segmentation algorithms for the allocation of microcalcifications on mammograms. Information Technology and Nanotechnology. 2019; 2391: 121-127. doi: 10.18287/1613-0073-2019-2391-121-127
- Li H., Chen D., Nailon W.H., Davies M.E., Laurenson D.I. Dual convolutional neural networks for breast mass segmentation and diagnosis in mammography. IEEE Trans Med Imaging. 2022; 41(1): 3-13. doi: 10.48550/arXiv.2008.02957
- Jafari Z., Karami E. Breast Cancer Detection in Mammography Images: A CNN-Based Approach with Feature Selection. Information. 2023; 14(7): 1-14. doi: 10.3390/info14070410
- Egoshin I., Pasynkov D., Kolchev A., Kliouchkin I., Pasynkova О. A segmentation approach for mammographic images and its clinical value. IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems, COMCAS 2017; 2018. p. 1-6. doi: 10.1109/COMCAS.2017.8244764
- Lee R.S., Gimenez F., Hoogi A., Miyake K.K., Gorovoy M., Rubin D.L. A curated mammography data set for use in computer-aided detection and diagnosis research. Sci Data. 2017; 4:170-177. doi: 10.1038/sdata.2017.177
- Moreira I.C., Amaral I., Domingues I., Cardoso A., Cardoso M.J., Cardoso J.S. INbreast: toward a full-field digital mammographic database. Acad Radiol. 2012; 19(2): 236-248. doi: 10.1016/j. acra.2011.09.014
- Flusser J., Zitova B., Suk T. Moments and Moment Invariants in Pattern Recognition. New York: John Wiley and Sons; 2009. 312 p.
- Ostanin S.A., Shayduk A.M., Kozlov D.Yu., Konovalov V.K., Leonov S.L., Fedorov V.V., Shoikhet Ya.N., Kolmogorov V.G., Lobanov M.N. Entropy method for estimating the complexity of edge medical images. The News of Altai State University. 2013; 1/2(77): 177-180 (In Russ). doi: 10.14258/izvasu(2013)1.2-36
- Suckling J., Parker J., Dance D. The Mammographic Image Analysis Society Digital Mammogram Database Exerpta Medica. International Congress Series. 1994; 1069: 375-378.
- Shams S., Platania R., Zhang J., Kim J., Lee K., Park S.J. Deep generative breast cancer screening and diagnosis. International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, Spain; 2018. p. 859-867. doi: 10.1007/978-3-030-00934-2_95
- Tsochatzidis L., Costaridou L., Pratikakis I. Deep learning for breast cancer diagnosis from mammograms—A comparative study. J. Imaging. 2019; 5(3): 1-11. doi: 10.3390/jimaging5030037
- Falconi L.G., Perez M., Aguilar W.G., Conci A. Transfer learning and fine tuning in breast mammogram abnormalities classification on CBIS-DDSM database. Adv. Sci. Technol. Eng. Syst. J. 2020; 5: 154-165. doi: 10.25046/aj050220
- Ansar W., Shahid A.R., Raza B., Dar A.H. Breast cancer detection and localization using mobilenet based transfer learning for mammograms. International symposium on intelligent computing systems, Sharjah, United Arab Emirates; 2020. p. 11-21. doi: 10.1007/978-3-030-43364-2_2
- Zhang H., Wu R., Yuan T., Jiang Z., Huang S., Wu J., Hua J., Niu Z., Ji D. DE-ada*: A novel model for breast mass classification using cross-modal pathological semantic mining and organic integration of multi-feature fusions. Inf. Sci. 2020; 539: 461-486. doi: 10.1016/j.ins.2020.05.080
- Himanish D., Akalpita D., Anupal N., Saurav M., Kangkana B., Zhongming Z. Breast cancer detection: Shallow convolutional neural network against deep convolutional neural networks based approach. Frontiers in Genetics. 2023; 13: 1097207. doi: 10.3389/fgene.2022.1097207
- Dhungel N., Carneiro G., Bradley A.P. A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med. image Anal. 2017; 37: 114-128. doi: 10.1016/j.media.2017.01.009
- Carneiro G., Nascimento J., Bradley A.P. Automated analysis of unregistered multiview mammograms with deep learning. IEEE Trans. Med. imaging. 2017; 36(11): 2355-2365. doi: 10.1109/TMI.2017.2751523
- Shi P., Wu C., Zhong J., Wang H. Deep learning from small dataset for BI-RADS density classification of mammography images. In 2019 10th International Conference on Information Technology in Medicine and Education (ITME), Qingdao, China; 2019. p. 102-109. doi:10.1109/ ITME.2019.00034
- El Houby E.M., Yassin N.I. Malignant and nonmalignant classification of breast lesions in mammograms using convolutional neural networks. Biomed. Signal Process. 2021; 70: 102954. doi: 10.1016/j.bspc.2021.102954
- Pasynkov D.V., Egoshin I.A., Kolchev A.A., Romanycheva E.A., Kliouchkin I.V., Pasynkova O.O. Detection and Classification of Microcalcifications in Mammographic Images. Meditsinskaya tekhnika. 2024; 1: 29-32 (In Russ).
补充文件
