On the nature of hidden attractors in nonlinear autonomous systems of differential equations
- Authors: Magnitskii N.A.1
-
Affiliations:
- Federal Research Center “Computer Science and Control” of Russian Academy of Sciences
- Issue: Vol 73, No 3 (2023)
- Pages: 16-20
- Section: Macrosystems Dynamics
- URL: https://journal-vniispk.ru/2079-0279/article/view/287277
- DOI: https://doi.org/10.14357/20790279230302
- ID: 287277
Cite item
Full Text
Abstract
Using the example of the performed analytical and numerical analysis of cycle bifurcations of a system of equations containing a “hidden” attractor, it is shown that the transition to chaos in the system occurs, as in any other nonlinear chaotic systems of differential equations, in accordance with the universal Feigenbaum- Sharkovsky-Magnitskii bifurcation scenario. At the same time, due to the absence of singular points and, consequently, the absence of homoclinic and heteroclinic separatrix contours, several incomplete FShM cascades of bifurcations are realized in the system, forming an infinitely sheeted surface of a two-dimensional heteroclinic separatrix manifold (separatrix zigzag) containing both all singular attractors of the system and all its unstable limit cycles.
About the authors
N. A. Magnitskii
Federal Research Center “Computer Science and Control” of Russian Academy of Sciences
Author for correspondence.
Email: nikmagn@gmail.com
Doctor of Physical and Mathematical Sciences, Professor
Russian Federation, MoscowReferences
- Pham V. T., Volos Ch. K., Jafari S. and Kapitaniak T. Coexistence of hidden chaotic attractors in a novel no-equilibrium system // Nonlinear Dynamics 2017. V 87. No.3. P. 2001–2010.
- Zuo Z. L. and Li C. Multiple attractors and dynamic analysis of a no-equilibrium chaotic system // Optik. 2016. V. 127. No. 19. P. 7952–7957.
- Sambas1 A., Mamat M., Vaidyanathan S., Mohamed M. A. and MadaSanjaya W. S. A New 4-D Chaotic System with Hidden Attractor and its Circuit Implementation // Int. J. Eng. & Tech. 2018. V.7. No.3. P. 1245-1250
- Wang X., Chen G.R. A chaotic system with only one stable equilibrium // Commun. Nonlinear Sci. Numer. Simul. 2012. No. 17. P.1264-1272.
- Huan S., Li Q., Yang X.-S. Horseshoes in a chaotic system with only one stable equilibrium // Int. J. Bifurc. Chaos. 2013. Vol. 23. No. 1. 1350002.
- Wei Z., Zhang W. Hidden hyperchaotic attractors in a modified lorenz-stenflo system with only one stable equilibrium // Int. J. Bifurc. Chaos. 2014. V. 24, No. 10. 1450127.
- Magnitskiy N.A. O topologicheskoy strukture singulyarnykh attraktorov nelineynykh sistem differentsial’nykh uravneniy // Differents. uravneniya. 2010. T. 46. № 11. P. 1551–1560.
- Magnitskiy N.A. Teoriya dinamicheskogo khaosa. M.: Lenand, 2011. 320 p.
- Magnitskii N.A. Universality of Transition to Chaos in All Kinds of Nonlinear Differential Equations. Chapter in Nonlinearity, Bifurcation and Chaos - Theory and Applications. Rijeca: InTech. 2012. P. 133-174.
- Magnitskii N.A. Bifurcation Theory of Dynamical Chaos. Chapter in Chaos Theory. Rijeka: InTech. 2018. P.197-215
Supplementary files
