Recognition of cadastral coordinates using convolutional recurrent neural networks
- Authors: Vinokurov I.V.1
-
Affiliations:
- Financial University under the Government of the Russian Federation
- Issue: Vol 15, No 1 (2024)
- Pages: 3-30
- Section: Articles
- URL: https://journal-vniispk.ru/2079-3316/article/view/259719
- DOI: https://doi.org/10.25209/2079-3316-2024-15-1-3-30
- ID: 259719
Cite item
Full Text
Abstract
About the authors
Igor Victorovich Vinokurov
Financial University under the Government of the Russian Federation
Author for correspondence.
Email: igvvinokurov@fa.ru
ORCID iD: 0000-0001-8697-1032
Candidate of Technical Sciences (PhD), Associate Professor at the Financial University under the Government of the Russian Federation. Research interests: information systems, information technologies, data processing technologies
References
- Shi B., Bai X., Yao C.. “An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39:11 (2017), pp. 2298–2304.
- Hochreiter S., Schmidhuber J.. “Long short-term memory”, Neural Computation, 9:8 (1997), pp. 1735–1780.
- Chung J., Gulcehre C., Cho K., Bengio Y.. “Gated feedback recurrent neural networks”, Proceedings of Machine Learning Research, 37 (2015), pp. 2067–2075.
- Винокуров И. В.. «Использование свёрточной нейронной сети для распознавания элементов текста на отсканированных изображениях плохого качества», Программные системы: теория и приложения, 13:3(54) (2022), с. 29–43.
- Винокуров И. В.. «Распознавание табличной информации с использованием свёрточных нейронных сетей», Программные системы: теория и приложения, 14:1(56) (2023), с. 3–30.
- Винокуров И. В.. «Распознавание цифровых последовательностей с использованием свёрточных нейронных сетей», Программные системы: теория и приложения, 14:3(58) (2023), с. 3–36.
- He P., Huang W., Qiao Y., Change Loy C., Tang X.. “Reading scene text in deep convolutional sequences”, AAAI'16: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (Phoenix, Arizona, USA, February 12–17, 2016), Proceedings of the AAAI Conference on Artificial Intelligence, 30 (2016), pp. 3501–3508.
- Shi B., Wang X., Lv P., Yao C., Bai X.. “Robust scene text recognition with automatic rectification”, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Las Vegas, NV, USA, June 27–30, 2016), 2016, pp. 4168–4176.
- Yin F., Wu Y. -C., Zhang X. -Y., Liu C. -L.. Scene text recognition with sliding convolutional character models, 2017, 10 pp.
- Nirmalasari D. A., Suciati N., Navastara D. A.. “Handwritten text recognition using fully convolutional network”, IOP Conference Series: Materials Science and Engineering, 1077:1 (2021), 012030, 9 pp.
- Liu X., Deng Y., Sun Y., Zhou Y.. “Multi-digit recognition with convolutional neural network and long short-term memory”, 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD) (Huangshan, China, July 28–30, 2018), IEEE, 2018, pp. 1187–1192.
- Madakannu A., Selvaraj A.. “DIGI-Net: a deep convolutional neural network for multi-format digit recognition”, Neural Computing and Applications, 32 (2020), pp. 11373–11383.
- Zou L., He Z., Wang K., Wu Z., Wang Y., Zhang G., Wang X.. “Text recognition model based on multi-scale fusion CRNN”, Sensors, 32:16 (2023), 7034, 18 pp.
- Agrawal V., Jagtap J.. Convolutional vision transformer for handwritten digit recognition, Research Square, 2022, 11 pp.
- Cheng L., Khalitov R., Yu T., Yang Z.. Classification of long sequential data using circular dilated convolutional neural networks, 2022, 16 pp.
- Bhat R. S.. Text recognition with CRNN-CTC network, W&B Fully Connected, 2022 URL https://wandb.ai/authors/text-recognition-crnn-ctc/reports/Text-Recognition-With-CRNN-CTC-Network–VmlldzoxNTI5NDI.
- Khamekhem S., Sourour A., Kessentini Y.. “Domain and writer adaptation of offline Arabic handwriting recognition using deep neural networks”, Neural Computing and Applications, 34 (2022), pp. 2055–2071.
Supplementary files
