A system for extracting symptom mentions from texts by means of neural networks
- Authors: Serdyuk Y.P.1, Vlasova N.A.1, Momot S.R.1
-
Affiliations:
- Ailamazyan Program Systems Institute of RAS
- Issue: Vol 14, No 1 (2023)
- Pages: 95-123
- Section: Articles
- URL: https://journal-vniispk.ru/2079-3316/article/view/259975
- DOI: https://doi.org/10.25209/2079-3316-2023-14-1-95-123
- ID: 259975
Cite item
Full Text
Abstract
About the authors
Yuri Petrovich Serdyuk
Ailamazyan Program Systems Institute of RAS
Author for correspondence.
Email: Yuri@serdyuk.botik.ru
ORCID iD: 0000-0003-2916-2102
Natalia Aleksandrovna Vlasova
Ailamazyan Program Systems Institute of RAS
Email: nathalie.vlassova@gmail.com
ORCID iD: 0000-0002-7843-6870
Seda Rubenovna Momot
Ailamazyan Program Systems Institute of RAS
Email: morlot@mail.ru
ORCID iD: 0000-0002-6097-6545
References
- Sutton R. T., Pincock D., Baumgar D. C., Sadowski D. C., Fedorak R. N., Kroeker K. I.. “An overview of clinical decision support systems: benefits, risks, and strategies for success”, npj Digit. Med, 6:3 (2020), 17.
- Kwan J. L., Lo L., Ferguson J., Goldberg H., Diaz-Martinez J. P., Tomlinson G., Grimshaw J. M., Shojania K. G.. “Computerised clinical decision support systems and absolute improvements in care: meta-analysis of controlled clinical trials”, BMJ, 370 (2020), m3216.
- Sha L., Qian F., Chang B., Sui Zh.. “Jointly extracting event triggers and arguments by dependency-bridge RNN and tensor-based argument interaction”, Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), Proceedings of the AAAI Conference on Artificial Intelligence, 32:1 (2018), pp. 5916–5923.
- Smirnova A., Cudre-Mauroux Ph.. “Relation extraction using distant supervision: A survey”, ACM Computing Surveys, 51:5 (2019), 106, 35 pp.
- Le Th. A., Burtsev M. S.. “A deep neural network model for the task of named entity recognition”, International Journal of Machine Learning and Computing, 9:1 (2019), pp. 8–13.
- Ji Z., Wei Q., Xu H.. “BERT-based ranking for biomedical entity normalization”, AMIA Jt Summits Transl Sci Proc., 2020, pp. 269–277.
- Anastasyev D. G.. “Annotated span normalization as a sequence labelling task”, Papers from the Annual International Conference “Dialogue” (2021), Computational Linguistics and Intellectual Technologies, vol. 20, 2021, ISBN 978-5-7281-3032-1, pp. 8–15.
- Anastasyev D. G.. “Exploring pretrained models for joint morpho-syntactic parsing of Russian”, Papers from the Annual International Conference “Dialogue” (2020), Computational Linguistics and Intellectual Technologies, vol. 19, 2020, ISBN 978-5-7281-3032-1, pp. 1-12.
- Bodenreider O.. “The Unified Medical Language System (UMLS): Integrating biomedical terminology”, Nucleic Acids Res, 32, suppl. 1 (2004), pp. D267–D270.
- Coletti M. H., Bleich H. L.. “Medical subject headings used to search the biomedical literature”, J. Am. Med. Inform. Assoc, 8:4 (2001), pp. 317–323, J. Am. Med. Inform. Assoc, 8:6 (2001).
- Бледжянц Г. А., Исакова Ю. А., Осипов А. А.. «Approbation and implementation of the effective use of the tools of the integrated medical knowledge base by the system of distance education of innovative disciplines», Человеческий капитал, 2020, №S12-1, с. 199–205 (in Russian).
- Nesterov A., Zubkova G., Miftahutdinov Z., Kokh V., Tutubalina E., Shelmanov A., Alekseev A., Avetisian M., Chertok A., Nikolenko S.. “RuCCoN: Clinical concept normalization in Russian”, Findings of the Association for Computational Linguistics: ACL 2022 (Dublin, Ireland), 2022, pp. 239–245.
- Временные методические рекомендации Министерства здравоохранения Российской Федерации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)», Министерство здравоохранения Российской Федерации, 233 с.
- Краткое руководство по разметке тестового корпуса. Задача «Medicine light», ИСА РАН и НЦЗД, 2014, Версия 1.6 URL http://nlp.isa.ru/index.php/component/portal/?view=corpusclinical.
- Blinov P., Avetisian M., Kokh V., Umerenkov D., Tuzhilin A.. “Predicting clinical diagnosis from patients electronic health records using BERT-based neural networks”, AIME 2020: Artificial Intelligence in Medicine, Lecture Notes in Computer Science, vol. 12299, eds. M. Michalowski, R. Moskovitch, Springer, Cham, 2020, ISBN 978-3-030-59136-6, pp. 111–121.
- Shelmanov A. O., Smirnov I. V., Vishneva E. A.. “Information extraction from clinical texts in Russian”, Papers from the Annual International Conference “Dialogue” (2015), Computational Linguistics and Intellectual Technologies, vol. 14, 2015, pp. 560–572.
- Sun Yu., Zhao Zh., Wang Zh., He H., Guo F., Luo Yu., Gao Q., Wei N., Liu J., Li G. -Zh., Li Z.. “Leveraging a joint learning model to extract mixture symptom mentions from traditional Chinese medicine clinical notes”, BioMed Research International, 2022, Conference Issue: Big Data for Biomedical Research, 2146236.
- Гаврилов Д. В., Кирилкина А. В., Серова Л. М.. «Algorithm for forming a suspicion of a new coronavirus infection based on the analysis of symptoms for use in medical decision support systems», Врач и информационные технологии, 2020, №4, с. 51–58 (in Russian).
- Lybarger K., Ostendorf M., Thompson M., Yetisgen M.. “Extracting COVID-19 diagnoses and symptoms from clinical text: A new annotated corpus and neural event extraction framework”, Journal of Biomedical Informatics, 117 (2021), 103761.
- Zolotukhin D., Smurov I.. “RuNormAS-2021: A shared task on Russian normalization of annotated spans”, Papers from the Annual International Conference “Dialogue” (2021), Computational Linguistics and Intellectual Technologies, vol. 20, 2021, ISBN 978-5-7281-3032-1, pp. 1245–1250.
- Dozat T., Manning C. D.. Deep biaffine attention for neural dependency parsing, 2017, 8 pp.
- Сорокин А. А., Макогонов С. В., Королев С. П.. «Information infrastructure for the collective work of scientists from the Russian Far East», Научно-техническая информация. Сер. 1: Организация и методика информационной работы, 2017, №12, с. 14–16 (in Russian).
Supplementary files
