Повышение точности сегментирования объектов с использованием генеративно-состязательной сети

Обложка

Цитировать

Полный текст

Аннотация

Маски, полученные с использованием модели глубокого обучения Mask R-CNN, в ряде случаев могут содержать фрагментированные контуры, неровные границы, ложные сращивания соседних объектов и участки с пропущенной сегментацией. Чем больше объектов детектирования на изображении и меньше их размер, тем более чаще встречаются различного вида недостатки их масок. Примерами таких изображений могут являться аэрофотоснимки коттеджных и садовых товариществ и кооперативов, характеризующихся высокой плотности застройки. Для коррекции указанных недостатков предлагается использовать модель генеративно-состязательной сети, выполняющую постобработку предсказанных Mask R-CNN масок.Качественная оценка сформированной в работе модели продемонстрировала, что она способна на приемлемом уровне восстанавливать целостность контуров, заполняет пропущенные области и разделять ошибочно объединенные объекты. Количественный анализ по метрикам IoU, precision, recall и F1-score показал статистически значимое улучшение качества сегментации по сравнению с исходными масками Mask R-CNN. Полученные результаты подтвердили, что предложенный подход позволяет довести точность формирования масок объектов до уровня, удовлетворяющего требованиям их практического применения в системах автоматизированного анализа аэрофотоснимков.

Об авторах

Игорь Викторович Винокуров

Финансовый Университет при Правительстве Российской Федерации

Email: igvvinokurov@fa.ru
Кандидат технических наук (PhD), ассоциированный профессор в Финансовом Университете при Правительстве Российской Федерации. Область научных интересов: информационные системы, информационные технологии, технологии обработки данных

Список литературы

  1. Vinokurov I. V. „Using the Mask R-CNN model for segmentation of real estate objects in aerial photographs“, Program Systems: Theory and Applications, 16:1(64) (2025), pp. 3–44.
  2. G. Cohen, R. Giryes. Generative adversarial networks, 2024, 28 pp.
  3. P. Isola, J.-Y. Zhu, T. Zhou, A. A. Efros. Image-to-image translation with conditional adversarial networks, 2016, 17 pp.
  4. T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, B. Catanzaro. High-resolution image synthesis and semantic manipulation with conditional GANs, 2017, 14 pp.
  5. C.-H. Lee, Z. Liu, L. Wu, P. Luo. MaskGAN: Towards diverse and interactive facial image manipulation, 2019, 20 pp.
  6. Y. Xue, T. Xu, H. Zhang, L. Rodney Long, X. Huang. SegAN: Adversarial network with multi-scale $L_1$ loss for medical image segmentation, 2017, 9 pp.
  7. X. Chen, C. Xu, X. Yang, D. Tao. Attention-GAN for object transfiguration in wild images, 2018, 18 pp.
  8. J.-Y. Zhu, T. Park, P. Isola, A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks, 2017, 18 pp.
  9. J. Gong, J. Xu, X. Tan, J. Zhou, Y. Qu, Y. Xie, L. Ma. Boundary-aware geometric encoding for semantic segmentation of point clouds, 2021, 9 pp.
  10. L. Xu, M. Gabbouj. Revisiting generative adversarial networks for binary semantic segmentation on imbalanced datasets, 2024, 14 pp.
  11. R. Abdelfattah, X. Wang, S. Wang. JPLGAN: Generative adversarial networks for power-line segmentation in aerial images, 2022, 11 pp.
  12. B. Benjdira, Y. Bazi, A. Koubaa, K. Ouni. „Unsupervised domain adaptation using generative adversarial networks for semantic segmentation of aerial images“, Remote Sens., 11:11 (2019), 1369, 23 pp.
  13. A. Kulkarni, T. Mohandoss, D. Northrup, E. Mwebaze, H. Alemohammad. Semantic segmentation of medium-resolution satellite imagery using conditional generative adversarial networks, 2020, 7 pp.
  14. Q. H. Le, K. Youcef-Toumi, D. Tsetserukou, A. Jahanian. GAN Mask R-CNN: Instance semantic segmentation benefits from generative adversarial networks, 2020, 13 pp.
  15. A. Radford, L. Metz, S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks, 2016, 16 pp.
  16. O. Ronneberger, Ph. Fischer, Th. Brox. U-Net: Convolutional networks for biomedical image segmentation, 2015, 8 pp.
  17. T. Karras, S. Laine, T. Aila. A style-based generator architecture for generative adversarial networks, 2018, 12 pp.
  18. T. Karras, T. Aila, S. Laine, J. Lehtinen. Progressive growing of GANs for improved quality, stability, and variation, 2017, 26 pp.
  19. M. Mirza, S. Osindero. Conditional generative adversarial nets, 2014, 7 pp.
  20. T. Miyato, T. Kataoka, M. Koyama, Y. Yoshida. Spectral normalization for generative adversarial networks, 2018, 26 pp.
  21. I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. C. Courville. Improved training of Wasserstein GANs, 2017, 20 pp.
  22. H. Zhang, I. Goodfellow, D. Metaxas, A. Odena. Self-attention generative adversarial networks, 2019, 10 pp.
  23. H. Chen. „An improved Douglas-Peucker algorithm applied in coastline generalization“, Fourth International Conference on Geology, Mapping, and Remote Sensing (ICGMRS 2023) (14–16 April 2023, Wuhan, China), Proc. SPIE, vol. 12978, 2024.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».