Повышение точности сегментирования объектов с использованием генеративно-состязательной сети
- Авторы: Винокуров И.В.1
-
Учреждения:
- Финансовый Университет при Правительстве Российской Федерации
- Выпуск: Том 16, № 2 (2025)
- Страницы: 111-152
- Раздел: Искусственный интеллект, интеллектуальные системы, нейронные сети
- URL: https://journal-vniispk.ru/2079-3316/article/view/300939
- DOI: https://doi.org/10.25209/2079-3316-2025-16-2-111-152
- ID: 300939
Цитировать
Аннотация
Об авторах
Игорь Викторович Винокуров
Финансовый Университет при Правительстве Российской Федерации
Email: igvvinokurov@fa.ru
Кандидат технических наук (PhD), ассоциированный профессор в Финансовом Университете при Правительстве Российской Федерации. Область научных интересов: информационные системы, информационные технологии, технологии обработки данных
Список литературы
- Vinokurov I. V. „Using the Mask R-CNN model for segmentation of real estate objects in aerial photographs“, Program Systems: Theory and Applications, 16:1(64) (2025), pp. 3–44.
- G. Cohen, R. Giryes. Generative adversarial networks, 2024, 28 pp.
- P. Isola, J.-Y. Zhu, T. Zhou, A. A. Efros. Image-to-image translation with conditional adversarial networks, 2016, 17 pp.
- T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, B. Catanzaro. High-resolution image synthesis and semantic manipulation with conditional GANs, 2017, 14 pp.
- C.-H. Lee, Z. Liu, L. Wu, P. Luo. MaskGAN: Towards diverse and interactive facial image manipulation, 2019, 20 pp.
- Y. Xue, T. Xu, H. Zhang, L. Rodney Long, X. Huang. SegAN: Adversarial network with multi-scale $L_1$ loss for medical image segmentation, 2017, 9 pp.
- X. Chen, C. Xu, X. Yang, D. Tao. Attention-GAN for object transfiguration in wild images, 2018, 18 pp.
- J.-Y. Zhu, T. Park, P. Isola, A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks, 2017, 18 pp.
- J. Gong, J. Xu, X. Tan, J. Zhou, Y. Qu, Y. Xie, L. Ma. Boundary-aware geometric encoding for semantic segmentation of point clouds, 2021, 9 pp.
- L. Xu, M. Gabbouj. Revisiting generative adversarial networks for binary semantic segmentation on imbalanced datasets, 2024, 14 pp.
- R. Abdelfattah, X. Wang, S. Wang. JPLGAN: Generative adversarial networks for power-line segmentation in aerial images, 2022, 11 pp.
- B. Benjdira, Y. Bazi, A. Koubaa, K. Ouni. „Unsupervised domain adaptation using generative adversarial networks for semantic segmentation of aerial images“, Remote Sens., 11:11 (2019), 1369, 23 pp.
- A. Kulkarni, T. Mohandoss, D. Northrup, E. Mwebaze, H. Alemohammad. Semantic segmentation of medium-resolution satellite imagery using conditional generative adversarial networks, 2020, 7 pp.
- Q. H. Le, K. Youcef-Toumi, D. Tsetserukou, A. Jahanian. GAN Mask R-CNN: Instance semantic segmentation benefits from generative adversarial networks, 2020, 13 pp.
- A. Radford, L. Metz, S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks, 2016, 16 pp.
- O. Ronneberger, Ph. Fischer, Th. Brox. U-Net: Convolutional networks for biomedical image segmentation, 2015, 8 pp.
- T. Karras, S. Laine, T. Aila. A style-based generator architecture for generative adversarial networks, 2018, 12 pp.
- T. Karras, T. Aila, S. Laine, J. Lehtinen. Progressive growing of GANs for improved quality, stability, and variation, 2017, 26 pp.
- M. Mirza, S. Osindero. Conditional generative adversarial nets, 2014, 7 pp.
- T. Miyato, T. Kataoka, M. Koyama, Y. Yoshida. Spectral normalization for generative adversarial networks, 2018, 26 pp.
- I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. C. Courville. Improved training of Wasserstein GANs, 2017, 20 pp.
- H. Zhang, I. Goodfellow, D. Metaxas, A. Odena. Self-attention generative adversarial networks, 2019, 10 pp.
- H. Chen. „An improved Douglas-Peucker algorithm applied in coastline generalization“, Fourth International Conference on Geology, Mapping, and Remote Sensing (ICGMRS 2023) (14–16 April 2023, Wuhan, China), Proc. SPIE, vol. 12978, 2024.
Дополнительные файлы
