Energy Function for Diffeomorphisms with Expanding Attractors and Contracting Repellers
- Authors: Kolchurina O.A.1
-
Affiliations:
- Higher School of Economics
- Issue: Vol 26, No 3 (2024)
- Pages: 231-244
- Section: Mathematics
- URL: https://journal-vniispk.ru/2079-6900/article/view/282020
- DOI: https://doi.org/10.15507/2079-6900.26.202403.231-244
- ID: 282020
Cite item
Full Text
Abstract
In this paper we consider -stable diffeomorphisms defined on smooth closed orientable manifolds of dimension , whose all nontrivial basic sets are either expanding attractors or contracting repellers of co-dimension 1. Due to the simple topological structure of the basins of such attractors and repellers, one can make a transition from a given dynamical system with nontrivial basic sets to a regular system which is a homeomorphism with a finite hyperbolic chain-recurrent set. It is well known that not every discrete dynamical systems has energy functions, i.e. a global Lyapunov function whose set of critical points coincides with the chain-recurrent set of the system. Counterexamples were found both among regular diffeomorphisms and among diffeomorphisms with chaotic dynamics. The main result of this paper is the proof of the fact that the topological energy functions for the original diffeomorphism and for its corresponding regular homeomorphism exist or do not exist simultaneously. Thus, numerous results obtained in the field of existence of energy functions for systems with regular dynamics, e.g., for Morse–Smale diffeomorphisms, may be applied to the study of the diffeomorphisms with expanding attractors and contracting repellers of co-dimension 1.
About the authors
Olga A. Kolchurina
Higher School of Economics
Author for correspondence.
Email: oakolchurina@edu.hse.ru
ORCID iD: 0000-0002-4998-2186
Student of the Faculty of Informatics, Mathematics and Computer Science
Russian Federation, Nizhny NovgorodReferences
- C. Conley, “Isolated invariant sets and the Morse index”, 38:1 (1978), 100 p.
- S. Smale, “On gradient dynamical systems”, Ann. of Math, 74:1 (1961), 199–206.
- K. R. Meyer, “Energy functions for Morse Smale systems”, American Journal of Mathematics, 90:4 (1968), 1031–1040. DOI: https://doi.org/10.2307/2373287.
- J. Franks, “Nonsingular smale flows on S3”, Topology, 24 (1985), 265–282. DOI: https://doi.org/10.1016/0040-9383(85)90002-3.
- V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “The energy function of gradient-like flows and the topological classification problem”, Math. Notes, 96:6 (2014), 856—863. DOI: https://doi.org/10.4213/mzm1056 (In Russ.).
- A. A. Bosova, V. E. Kruglov, O. V. Pochinka, “Energy function for an Ω-stable flow with a saddle connection on a sphere”, Taurida Journal of Computer Science Theory and Mathematics, 4 (2017), 51–58 (In Russ.).
- A. E. Kolobyanina, V. E. Kruglov, “Morse-Bott energy function for surface Ω-steady flows”, Middle Volga Mathematical Society Journal, 22:4 (2020), 434–441. DOI: https://doi.org/10.15507/2079-6900.22.202004.434-441 (In Russ.).
- O. V. Pochinka, S. K. Zinina, “Construction of the Morse-Bott energy function for regular topological flows”, Math. Notes, 107:2 (2020), 313–321 (In Russ.).
- O. V. Pochinka, S. K. Zinina, “Construction of the Morse-Bott energy function for regular topological flows”, Regul. Chaotic Dyn., 26:4 (2021), 350–369. DOI: https://doi.org/10.1134/S1560354721040031.
- V. Z. Grines, O. V. Pochinka, “Construction of energetic functions for Ω-stable diffeomorphisms on 2- and 3-manifolds”, Proceedings of the Crimean Autumn Mathematical School-Symposium, CMFD, 63:2 (2017), 191–222. DOI: https://doi.org/10.22363/2413-3639-2017-63-2-191-222 (In Russ.).
- D. Pixton, “Wild unstable manifolds”, Topology, 16 (1977), 167–172. DOI: https://doi.org/10.1016/0040-9383(77)90014-3.
- V. Z. Grines, F. Laudenbach, O. V. Pochinka, “Quasi-energy function for diffeomorphisms with wild separatrices”, Mat. Zametki, 86:2 (2009), 175–183. DOI: https://doi.org/10.4213/mzm8474 (In Russ.).
- T. M. Mitryakova, O. V. Pochinka, A. E. Shishenkova, “Energy function for diffeomorphisms on surfaces with finite hyperbolic chain recurrent set”, Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 14:1 (2012), 98–106 (In Russ.).
- V. Z. Grines, F. Laudenbach, O. V. Pochinka, “Dynamically ordered energy function for Morse-Smale diffeomorphisms on 3-manifolds”, Proceedings of the Steklov Institute of Mathematics, 278 (2012), 27–40 (In Russ.).
- M. K. Barinova, V. Z. Grines, O. V. Pochinka, “Criterion for the existence of an energy function for a regular homeomorphism of the 3-sphere”, Proceedings of the Steklov Institute of Mathematics, 321:1 (2023), 45–61. DOI: https://doi.org/10.4213/tm4323 (In Russ.).
- M. K. Barinova, “On existence of an energy function for Ω-stable surface diffeomorphisms”, Lobachevskii Journal of Mathematics, 43 (2022), 257–263.
- V. Z. Grines, M. K. Noskova, O. V. Pochinka, “Energy function for A-diffeomorphisms of surfaces with one-dimensional non-trivial basic sets”, Dynamical Systems, 5:1–2 (2015), 31–37 (In Russ.).
- V. Z. Grines, M. K. Noskova, O. V. Pochinka, “The construction of an energy function for three-dimensional cascades with a two-dimensional expanding attractor”, Transactions of the Moscow Mathematical Society, 76:2 (2015), 237–249 (In Russ.).
- M. K. Barinova, V. Z. Grines, O. V. Pochinka, B. Yu, “Existence of an energy function for three-dimensional chaotic “sink-source” cascades”, Chaos, 31:6 (2021), 1–8. DOI: https://doi.org/10.1063/5.0026293.
- M. K. Barinova, E. K. Shustova, “Energy function for direct products of discrete dynamical systems”, Zhurnal SVMO, 25:2 (2023), 11–21. DOI: https://doi.org/10.15507/2079-6900.25.202302.11-21 (In Russ.).
- M. K. Barinova, E. K. Shustova, “Dynamical properties of direct products of discrete dynamical systems”, Zhurnal SVMO, 24:1 (2022), 21–30. DOI: https://doi.org/10.15507/2079-6900.24.202201.21-30 (In Russ.).
- J. Palis, W. Melo, Geometric theory of dynamical systems: an introduction, Springer New York, NY, 2012 DOI: https://doi.org/10.1007/978-1-4612-5703-5, 198 p.
- M. Shub, “Stabilité globale des systèmes dynamiques”, Astérisque, 1978, no. 56, 224 p.
- S. Smale, “The omega-stability theorem, global analysis”, Proc. Symp. Pure Math, 14 (1970), 289–297.
- J. E. Franke, J. F. Selgrade, “Hyperbolicity and chain recurrence”, Journal of Differential Equations, 26:1 (1977), 27–36. DOI: https://doi.org/10.1016/0022-0396(77)90096-1.
- S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817.
- J. Milnor, “On manifolds homeomorphic to the 7-sphere”, Annals of Mathematics, 64:2 (1956), 399–405. DOI: https://doi.org/10.2307/1969983.
- S. K. Donaldson, “An application of gauge theory to four-dimensional topology”, Journal of Differential Geometry, 18:2 (1983), 279–315.
- M. K. Barinova, “On isolated periodic points of diffeomorphisms with expanding attractors of codimension 1”, Cornell University. Series Math Arxiv.org, 2024. DOI: https://doi.org/10.48550/arXiv.2404.15699.
- V. Z. Grines, V. S. Medvedev, E. V. Zhuzhoma, “On the topological structure of manifolds supporting axiom a systems”, Regul. Chaot. Dyn., 27 (2022), 613–628. DOI: https://doi.org/10.1134/S1560354722060028.
Supplementary files
