A square-root method for identifying the parameters of discrete-time linear stochastic systems with unknown input signals
- 作者: Tsyganova J.V.1, Galushkina D.V.2, Kuvshinova A.N.3
-
隶属关系:
- Innopolis University
- Ulyanovsk State University
- Ulyanovsk State University of Education
- 期: 卷 27, 编号 3 (2025)
- 页面: 341-363
- 栏目: Mathematics
- ##submission.dateSubmitted##: 17.10.2025
- ##submission.dateAccepted##: 17.10.2025
- ##submission.datePublished##: 27.08.2025
- URL: https://journal-vniispk.ru/2079-6900/article/view/332388
- ID: 332388
如何引用文章
全文:
详细
The paper proposes a new square-root gradient-based parameter identification method for discrete-time linear stochastic state-space systems with unknown input signals. A new algorithm is developed for calculating the values of the identification criterion and its gradient. The approach is based on a square-root modification of the Gillijns – De Moor method and uses numerically stable matrix orthogonal transformations. Unlike the existing solutions, this paper uses original methods for differentiating matrix orthogonal transformations. A new sensitivity model is constructed and theoretically justified, that allows calculating the values of the identification criterion gradient by using partial derivatives of state vector estimates based on identified parameters. The main results include new equations for the square-root sensitivity model and a square-root algorithm for calculating the values of the identification criterion and its gradient. Numerical experiments were performed in MATLAB for example of solving the numerical identification problem of a stochastic diffusion model with unknown boundary conditions. The effectiveness of the proposed algorithm is confirmed by comparison of gradient-based and gradient-free methods. The results of numerical experiments demonstrate efficiency of approach proposed which can be used to solve practical problems of identifying the parameters of mathematical models represented by discrete-time state-space linear stochastic systems, in the absence of any prior information about the input signals.
作者简介
Julia Tsyganova
Innopolis University
Email: tsyganovajv@gmail.com
ORCID iD: 0000-0001-8812-6035
D. Sc. (Phys. and Math.), Professor, Institute of Data Science and Artificial intelligence
俄罗斯联邦, 1, Universitetskaya Str., Innopolis, 420500, RussiaDarya Galushkina
Ulyanovsk State University
Email: dgalushkina73@gmail.com
ORCID iD: 0000-0003-4041-0533
Assistant Professor, Department of Information Technologies
俄罗斯联邦, 42 Leo Tolstoy str., Ulyanovsk, 432017, RussiaAnastasia Kuvshinova
Ulyanovsk State University of Education
编辑信件的主要联系方式.
Email: kuvanulspu@yandex.ru
ORCID iD: 0000-0002-3496-5981
Ph.D. (Phys. and Math.) Department of Higher Mathematics
俄罗斯联邦, 4/5 Lenin Square, Ulyanovsk, 432071, Russia参考
- M. S. Grewal, A. P. Andrews, Kalman filtering: Theory and practice using MATLAB, Prentice Hall, New Jersey, 2001, 401 p.
- B. Friedland, "Treatment of bias in recursive filtering", IEEE Transactions on Automatic Control, 14:4 (1969), 359–367. doi: 10.1109/TAC.1969.1099223
- P. K. Kitanidis, "Unbiased minimum-variance linear state estimation", Automatica, 23:6 (1987), 775–778. doi: 10.1016/0005-1098(87)90037-9
- M. Darouach, M. Zasadzinski, "Unbiased minimum variance estimation for systems with unknown exogenous inputs", Automatica, 33:4 (1997), 717–719. doi: 10.1016/S0005-1098(96)00217-8
- C.-S. Hsieh, "Robust two-stage Kalman filters for systems with unknown inputs", IEEE Transactions on Automatic Control, 45:12 (2000), 2374–2378. doi: 10.1109/9.895577
- S. Gillijns, B. De Moor, "Unbiased minimum-variance input and state estimation for linear discrete-time systems", Automatica, 43:1 (2007), 111–116. doi: 10.1016/j.automatica.2006.08.002
- S. Gillijns, N. Haverbeke, B. De Moor, "Information, covariance and square-root filtering in the presence of unknown inputs", The 2007 European Control Conference (ECC): Proceedings (Kos, Greece, 2–5 July, 2007), IEEE, 2007, 2213–2217 doi: 10.23919/ECC.2007.7068514.
- Y. Hua, N. Wang, K. Zhao, "Simultaneous unknown input and state estimation for the linear system with a rank-deficient distribution matrix", Mathematical Problems in Engineering, 2021, ID 6693690. doi: 10.1155/2021/6693690
- Yu. Tsyganova, A. Tsyganov, "Parameter identification of the linear discrete-time stochastic systems with uknown exogenous inputs", Cybernetics and Physics, 12:3 (2023), 219–229. doi: 10.35470/2226-4116-2023-12-3-219-229
- J. V. Tsyganova, A. V. Tsyganov, "Identification of parameters in a discrete linear stochastic system with unknown input signals'', XIV All-Russian Meeting on Control Problems : Collection of scientific papers (Moscow, June 17–20, 2024), V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, 2024, 991–995 (In Russ.), https://www.elibrary.ru/item.asp?id=79486619.
- D. Galushkina, A. Kuvshinova, Yu. Tsyganova, "Numerical identification of reaction-diffusion model parameters under unknown boundary conditions", 2024 X International Conference on Information Technology and Nanotechnology (ITNT) : Proceedings (Samara, Russian Federation, 20–24 May, 2024), IEEE, 2024, 1–4 DOI:
- 1109/ITNT60778.2024.10582357.
- T. Kailath, A. H. Sayed, B. Hassibi, Linear estimation, Prentice Hall, New Jersey, 2000, 856 p.
- Yu. V. Tsyganova, M. V. Kulikova, "[On Modern Array Algorithms for Optimal Discrete Filtering]", Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:4 (2018), 5–30 (In Russ.). doi: 10.14529/mmp180401
- A. N. Kuvshinova, D. V. Galushkina, "[On the square-root modification of the Gillijns – De-More algorithm]'', Scientific Notes of UlSU. Series "Mathematics and Information Technologies", 2022, no. 1, 17–22 (In Russ.), http://mi.mathnet.ru/ulsu135.
- A. Tsyganov, Yu. Tsyganova, "SVD-based parameter identification of discrete-time stochastic systems with unknown exogenous inputs", Mathematics, 12:7 (2024), 1006. doi: 10.3390/math12071006
- Ya. Z. Tsypkin, Informacionnaya teoriya identifikacii [Information theory of identification], Fizmatlit, Moscow, 1995 (In Russ.), 336 p.
- N. K. Gupta, R. K. Mehra, "Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations", IEEE Trans. on Automatic Control, AC-19 (1974), 774–783. doi: 10.1109/TAC.1974.1100714
- B. P. Gibbs, Advanced Kalman filtering, least-squares and modeling : a practical handbook, John Wiley & Sons, Inc., Hoboken, New Jersey, 2011, 632 p.
- A. V. Golubkov, Yu. V. Tsyganova, A. V. Tsyganov, "Constructing a sensitivity model based on an algorithm for simultaneous estimation of input and state for linear discrete-time stochastic systems with unknown inputs", Control Systems, Complex Systems : Modeling, Stability, Stabilization, Intelligent Technologies (CSMSSIT-2025): Proceedings of the X International Scientific and Practical Conference (Yelets, April 24–25, 2023), Yelets State University named after I. A. Bunin, Yelets, 2023, 41–45 (In Russ.), https://elibrary.ru/item.asp?id=54172715.
- G. J. Bierman, M. R. Belzer, J. S. Vandergraft, D.W. Porter, "Maximum likelihood estimation using square root information filters", IEEE Trans. Automat. Contr., 35:12 (1990), 1293–1299. doi: 10.23919/ACC.1989.4790637
- M. V. Kulikova, Yu. V. Tsyganova, "[On differentiation of matrix orthogonal transformations]", Journal of Computational Mathematics and Mathematical Physics, 55:9 (2015), 1460–1473 (In Russ.). doi: 10.1134/S0965542515090109
- J. Nocedal, S. J. Wright, Numerical optimization. In Springer Series in Operations Research and Financial Engineering, Springer Nature, 2006, 664 p.
- A. N. Kuvshinova, "[Dynamic identification of boundary conditions for convectiondiffusion transport model in the case of noisy measurements]", Zhurnal SVMO, 21:4 (2019), 469–479 (In Russ.). doi: 10.15507/2079-6900.21.201904.469-479
- A. B. Mazo, Vychislitel'naya gidrodinamika. CHast' 1. Matematicheskie modeli, setki i setochnye skhemy : ucheb. posobie [Computational fluid dynamics. Part 1. Mathematical models, grids and grid schemes : textbook], Kazan. Univ., Kazan, 2018 (In Russ.), 165 p.
补充文件



