Methods of numerical analysis for some integral dynamical systems with delay arguments

Cover Page

Cite item

Full Text

Abstract

The aim of this work is to construct direct and iterative numerical methods for solving functional equations with hereditary components. Such equations are a convenient tool for modeling dynamical systems. In particular, they are used in population models structured by age with a finite life span. Models based on integro-differential and integral equations with various kinds of delay arguments are considered. For nonlinear equations, the operators are linearized according to the modified Newton-Kantorovich scheme. Direct quadrature and simple iteration methods are used to discretize linear equations. These methods are constructed in the paper: an iterative method for solving a nonlinear integro-differential equation on the semiaxis  (-∞,0)(,0]">, a direct method for solving the signal recovery problem, and iterative methods for solving a nonlinear Volterra integral equation with a constant delay. Special quadrature formulas based on orthogonal Lagger polynomials are used to approximate improper integrals on the semiaxis. The results of numerical experiments confirm the convergence of suggested methods. The proposed approaches can also be applied to other classes of nonlinear equations with delays.

About the authors

Aleksandr N. Tynda

Penza State University

Author for correspondence.
Email: tyndaan@mail.ru
ORCID iD: 0000-0001-6023-9847

Ph. D. (Phys.-Math.), Associate Professor, Department of Higher and Applied Mathematics

Russian Federation, 40 Krasnaya St., Penza 440026, Russia

References

  1. H. Brunner, Collocation methods for Volterra integral and related functional differential equations, Cambridge: Cambridge University Press, 2004, 612 p.
  2. F. Caliò, E. Marchetti, R. Pavani, "About the deficient spline collocation method for particular differential and integral equations with delay", Rend. Sem. Mat. Univ. Pol. Torino, 61 (2003), 287–300.
  3. A. Cardone, I. D. Prete, C. Nitsch, "Gaussian direct quadrature methods for double delay Volterra integral equations", Electronic Transactions on Numerical Analysis., 35 (2009), 201–216.
  4. E.Messina, E. Russo, A. Vecchio, "A convolution test equation for double delay integral equations", Journal of Computational and Applied Mathematics, 228:2 (2009), 589–599.
  5. J. M. Gushing, Volterra Integrodifferential Equations in Population Dynamics. In: Mathematics of Biology., 80, Berlin: Springer, 2010.
  6. L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon, 2nd ed., 1982, 589 p.
  7. A. F. Verlan, V. S. Sizikov, Integral equations: methods, algorithms, programms, Kiev: Naukova Dumka Publ., 1986 (in Russ).
  8. Z. Popović, "Basic mathematical models in economic-ecological control", Facta Universitatis. Economics and Organization, 5:3 (2008), 251–262.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Tynda A.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).