On global extrema of power Takagi functions
- Authors: Galkin O.E.1, Galkina S.Y.1, Tronov A.A.1
-
Affiliations:
- National Research University «Higher School of Economics»
- Issue: Vol 25, No 2 (2023)
- Pages: 22-36
- Section: Mathematics
- Submitted: 16.12.2025
- Accepted: 17.12.2025
- Published: 24.12.2025
- URL: https://journal-vniispk.ru/2079-6900/article/view/358412
- DOI: https://doi.org/10.15507/2079-6900.25.202302.22-36
- ID: 358412
Cite item
Full Text
Abstract
By construction, power Takagi functions Sp are similar to Takagi's continuous nowhere differentiable function described in 1903. These real-valued functions Sp have one real parameter p>0. They are defined on the real axis R
About the authors
Oleg E. Galkin
National Research University «Higher School of Economics»
Email: olegegalkin@ya.ru
ORCID iD: 0000-0003-2085-572X
Ph.D. (Phys.-Math.), Associate Professor, Department of Fundamental Mathematics
Russian Federation, 25/12 B. Pecherskaya St., Nizhny Novgorod 603155, RussiaSvetlana Yu. Galkina
National Research University «Higher School of Economics»
Email: svetlana.u.galkina@mail.ru
ORCID iD: 0000-0002-2476-2275
Ph.D. (Phys.-Math.), Associate Professor, Department of Fundamental Mathematics
Russian Federation, 25/12 B. Pecherskaya St., Nizhny Novgorod 603155, RussiaAnton A. Tronov
National Research University «Higher School of Economics»
Author for correspondence.
Email: tronovaa@yandex.ru
ORCID iD: 0009-0000-6454-1226
master’s student of the Faculty of Informatics, Mathematics and Computer Science
Russian Federation, 25/12 B. Pecherskaya St., Nizhny Novgorod 603155, RussiaReferences
- T. Takagi, "A simple example of a continuous function without derivative", Tokyo Sugaku-Butsurigakkwai Hokoku, 1 (1901), 176–177. DOI: https://doi.org/10.11429/subutsuhokoku1901.1.F176
- F. A. Medvedev, Essays on the history of the theory of functions of a real variable, Nauka Publ., Moscow, 1975 (In Russ.), 248 p.
- J. Thim, "Continuous nowhere differentiable functions: Master thesis", 2003, 98 p.
- F. S. Cater, "Constructing nowhere differentiable functions from convex functions", Real Anal. Exchange., 28:2 (2002/2003), 617–623.
- Y. Fujita, N. Hamamuki, A. Siconolfi, N. Yamaguchi, "A class of nowhere differentiable functions satisfying some concavity-type estimate", Acta Mathematica Hungarica, 160 (2020), 343–359. DOI: https://doi.org/10.1007/s10474-019-01007-3
- P. C. Allaart, K. Kawamura, "The Takagi function: a survey", Real Anal. Exchange., 37:1 (2011/12), 1–54. DOI: https://doi.org/10.14321/realanalexch.37.1.0001
- J.-P. Kahane, "Sur l’exemple, donné par M. de Rham, d’une fonction continue sans dérivée", Enseignement Math., 5 (1959), 53–57. DOI: https://doi.org/10.5169/seals-35474
- M. Hata, M. Yamaguti, "Takagi function and its generalization", Japan J. Appl. Math., 1 (1984), 183–199. DOI: https://doi.org/10.1007/BF03167867
- X. Han, A. Schied, "Step roots of Littlewood polynomials and the extrema of functions in the Takagi class", Math. Proc. of the Cambridge Phil. Soc., 173 (2022), 591–618. DOI: https://doi.org/10.1017/S0305004122000020
- O. E. Galkin, S. Yu. Galkina, "Functions consistent with real numbers, and global extrema of functions in exponential Takagi class", 2020, 60 p. DOI: https://doi.org/10.48550/arXiv.2003.08540
- S. Yu. Galkina, "On the Fourier-Haar coefficients of functions of bounded variation", Math. Notes, 51:1 (1992), 27–36. DOI: https://doi.org/10.1007/BF01229431
- J. Tabor, J. Tabor, "Takagi functions and approximate midconvexity", J. Math. Anal. Appl., 356:2 (2009), 729–737. DOI: https://doi.org/10.1016/j.jmaa.2009.03.053
- O. E. Galkin, S. Yu. Galkina, "On properties of functions in exponential Takagi class", Ufa Mathematical Journal, 7:3 (2015), 28–37. DOI: https://doi.org/10.13108/2015-7-3-28
- S. Tasaki, I. Antoniou, Z. Suchanecki, "Deterministic diffusion, de Rham equation and fractal eigenvectors", Physics Letter A., 179:2 (1993), 97–102. DOI: https://doi.org/10.1016/0375-9601(93)90656-K
- A. Házy, Zs. Páles, "On approximately t-convex functions", Publ. Math. Debrecen., 66:3 (2005), 489–501. DOI: https://doi.org/10.1017/S0305004122000020
- O. E. Galkin, S. Yu. Galkina, "Global extrema of the Gray Takagi function of Kobayashi and binary digital sums", Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:1 (2017), 17–25 (In Russ.). DOI: https://doi.org/10.20537/vm170102
- O. E. Galkin, S. Yu. Galkina, "Global extrema of the Delange function, bounds for digital sums and concave functions", Sbornik: Mathematics, 211:3 (2020), 336–372. DOI: https://doi.org/10.4213/sm9143
- O. E. Galkin, S. Yu. Galkina, "Application of extreme sub- and epiarguments, convex and concave envelopes to search for global extrema", Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 29:4 (2019), 483–500 (In Russ.). DOI: https://doi.org/10.20537/vm190402
- J. Rodríguez-Cuadrado, J. San Martín, "Sierpinski-Takagi combination for a uniform and optimal point-surface load transmission", Appl. Math. Modelling., 105 (2022), 307–320. DOI: https://doi.org/10.1016/j.apm.2021.12.040
- Y. Fujita, A. Siconolfi, N. Yamaguchi, "Hamilton–Jacobi flows with nowhere differentiable initial data", Mathematische Annalen., 385 (2023), 1061–1084. DOI: https://doi.org/10.1007/s00208-021-02353-w
Supplementary files


