On Logarithmic Hölder Condition and Local Extrema of Power Takagi Functions
- Authors: Galkin O.E.1, Galkina S.Y.2, Mulyar O.A.3
-
Affiliations:
- National Research University "Higher School of Economics", Nizhny Novgorod Branch
- National Research University «Higher School of Economics»
- National Research Lobachevsky State University of Nizhny Novgorod
- Issue: Vol 25, No 4 (2023)
- Pages: 223-241
- Section: Mathematics
- Submitted: 21.12.2025
- Accepted: 21.12.2025
- Published: 24.12.2025
- URL: https://journal-vniispk.ru/2079-6900/article/view/360375
- DOI: https://doi.org/10.15507/2079-6900.25.202304.223-241
- ID: 360375
Cite item
Full Text
Abstract
This paper studies one class of real functions, which we call Takagi power functions. Such functions have one positive real parameter; they are continuous, but nowhere differentiable, and are given on a real line using functional series. These series are similar to the series defining the continuous, nowhere differentiable Takagi function described in 1903. For each parameter value, we derive a functional equation for functions related to Takagi power functions. Then, using this equation, we obtain an accurate two-sides estimate for the functions under study. Next, we prove that for parameter values not exceeding 1, Takagi power functions satisfy the Hölder logarithmic condition, and find the smallest value of the constant in this condition. As a result, we get the usual Hölder condition, which follows from the logarithmic Hölder condition. Moreover, for parameter values ranging from 0 to 1, we investigate the behavior of Takagi power functions in the neighborhood of their global maximum points. Then we show that the functions under study reach a strict local minimum on the real axis at binary-rational points, and only at them. Finally, we describe the set of points at which our functions reach a strict local maximum. The benefit of our research lies in the development of methods applicable to continuous functions that cannot be differentiated anywhere. This can significantly expand the set of functions being studied.
About the authors
Oleg Evgenjevich Galkin
National Research University "Higher School of Economics", Nizhny Novgorod Branch
Email: olegegalkin@ya.ru
ORCID iD: 0000-0003-2085-572X
Candidate of physico-mathematical sciences, Associate professor
25/12 B. Pecherskaya St., Nizhny Novgorod 603155, RussiaSvetlana Yu. Galkina
National Research University «Higher School of Economics»
Email: svetlana.u.galkina@mail.ru
ORCID iD: 0000-0002-2476-2275
Ph.D. (Phys.-Math.), Associate Professor, Department of Fundamental Mathematics
Russian Federation, 25/12 B. Pecherskaya St., Nizhny Novgorod 603155, RussiaOlga A. Mulyar
National Research Lobachevsky State University of Nizhny Novgorod
Author for correspondence.
Email: olga.mulyar@itmm.unn.ru
ORCID iD: 0009-0008-2263-4203
Ph.D. (Phys.-Math.), Lecturer, Department of Algebra, Geometry and Discrete Mathematics
Russian Federation, 23 Gagarin Av., Nizhny Novgorod 603022, RussiaReferences
- P. C. Allaart, K. Kawamura, "The Takagi function: a survey", Real Anal. Exchange., 37:1 (2011/12), 1–54. DOI: https://doi.org/10.14321/realanalexch.37.1.0001
- J. C. Lagarias, "The Takagi function and its properties", RIMS Kokyuroku bessatsu B34: Functions and number theory and their probabilistic aspects, 34 (2012), 153–189.
- O. E. Galkin, S. Yu. Galkina, A. A. Tronov, "On global extrema of power Takagi functions", Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 25:2 (2023), 22–36 (In Russ.). DOI: https://doi.org/10.15507/2079-6900.25.202302.22-36
- F. A. Medvedev, Essays on the history of the theory of functions of a real variable, M. Nauka, 1975 (In Russ.), 248 p.
- V.A. Okorokov, E.V. Sandrakova, Fractals in fundamental physics. Fractal properties of multiple particle formation and sampling topology, M. MEPhI, 2009 (In Russ.), 460 p.
- J. Thim, Continuous nowhere differentiable functions. Master’s thesis, Luleå, 2003, 98 p.
- Y. Heurteaux, "Weierstrass functions in Zygmund’s class", Proc. Amer. Math. Soc., 133 (2005), 2711–2720.
- Y. Fujita, N. Hamamuki, A. Siconolfi, N. Yamaguchi, "A class of nowhere differentiable functions satisfying some concavity-type estimate", Acta Mathematica Hungarica., 160 (2020), 343–359. DOI: https://doi.org/10.1007/s10474-019-01007-3
- E. E. Posey, J. E. Vaughan, "Extrema and nowhere differentiable functions", Rocky Mountain Journal of mathematics., 16 (1986), 661–668. DOI: https://doi.org/10.1216/RMJ-1986-16-4-661
- J.-P. Kahane, "Sur l’exemple, donné par M. de Rham, d’une fonction continue sans dérivée", Enseignement Math., 5 (1959), 53–57.
- S. Banach, "Uber die Baire’sche Kategorie gewisser Funktionenmengen", Studia Math., 3:3 (1931), 174–179. DOI: https://doi.org/10.4064/sm-3-1-174-179
- P. C. Allaart, K. Kawamura, "Extreme values of some continuous nowhere differentiable functions", Math. Proc. of the Cambridge Phil. Soc., 140:2 (2006), 269–295. DOI: https://doi.org/10.1017/S0305004105008984
- O. E. Galkin, S. Yu. Galkina, "Application of extreme sub- and epiarguments, convex and concave envelopes to search for global extrema", Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 29:4 (2019), 483–500 (In Russ.). DOI: https://doi.org/10.20537/vm190402
- O. E. Galkin, S. Yu. Galkina, "Global extrema of the Delange function, bounds for digital sums and concave functions", Sbornik: Mathematics, 211:3 (2020), 336–372. DOI: https://doi.org/10.1070/SM9143
- A. Denjoy, L. Felix, P. Montel, "Henri Lebesgue, le savant, le professeur, l’homme", Enseignement Math., 3 (1957), 1–18. DOI: https://www.eperiodica.ch/digbib/view?pid=ens-001%3A1957%3A3#102
- V. Makogin, Yu. Mishura, "Fractional integrals, derivatives and integral equations with weighted Takagi–Landsberg functions", Nonlinear Analysis: Modelling and Control, 25:6 (2020), 1079–1106. DOI: https://doi.org/10.15388/namc.2020.25.20566
- H. Yu, “Weak tangent and level sets of Takagi functions” , Monatshefte für Mathematik, 1192:6 (2020), 249–264. DOI: https://doi.org/10.1007/s00605-020-01377-9
- X. Han, A. Schied, Z. Zhang, "A limit theorem for Bernoulli convolutions and the Ф-variation of functions in the Takagi class", J. Theor. Probab., 35 (2022), 2853–2878. DOI: https://doi.org/10.1007/s10959-022-01157-1
- M. Krüppel, "Takagi’s continuous nowhere differentiable function and binary digital sums", Rostock. Math. Kolloq., 63 (2008), 37–54.
- A. Shidfar, K. Sabetfakhri, "On the continuity of van der Waerden’s function in the Hölder sense", Amer. Math. Monthly, 93:5 (1986), 375–376.
- M. Krüppel, "On the extrema and the improper derivatives of Takagi’s continuous nowhere differentiable function", Rostock. Math. Kolloq., 62 (2007), 41–59.
- A. Házy, Zs. Páles, "On approximately t-convex functions", Publ. Math. Debrecen., 66:3–4 (2005), 489–501.
Supplementary files


